JIT Implementation Manual

The Complete Guide to
Just-in-Time Manufacturing

Second Edition

Volume 3
Contents

Volume 1

1 Production Management and JIT Production Management 1
 Approach to Production Management.. 3
 Overview of the JIT Production System... 7
 Introduction of the JIT Production System.....................................12

2 Destroying Factory Myths: A Revolutionary Approach......... 35
 Relations among Sales Price, Cost, and Profit..............................35
 Ten Arguments against the JIT Production Revolution.................40
 Approach to Production as a Whole...44

Volume 2

3 “Wastology”: The Total Elimination of Waste.........................145
 Why Does Waste Occur?...146
 Types of Waste .. 151
 How to Discover Waste ...179
 How to Remove Waste ...198
 Secrets for Not Creating Waste..226

4 The “5S” Approach ...237
 What Are the 5S’s? ..237
 Red Tags and Signboards: Proper Arrangement and
 Orderliness Made Visible ..265
 The Red Tag Strategy for Visual Control268
 The Signboard Strategy: Visual Orderliness293
 Orderliness Applied to Jigs and Tools..307
Volume 3

5 **Flow Production** ... 321
 Why Inventory Is Bad .. 321
 What Is Flow Production? .. 328
 Flow Production within and between Factories 332

6 **Multi-Process Operations** .. 387
 Multi-Process Operations: A Wellspring for Humanity on the Job .. 387
 The Difference between Horizontal Multi-Unit Operations and
 Vertical Multi-Process Operations ... 388
 Questions and Key Points about Multi-Process Operations 393
 Precautions and Procedures for Developing Multi-Process
 Operations ... 404

7 **Labor Cost Reduction** .. 415
 What Is Labor Cost Reduction? ... 415
 Labor Cost Reduction Steps .. 419
 Points for Achieving Labor Cost Reduction 422
 Visible Labor Cost Reduction ... 432

8 **Kanban** ... 435
 Differences between the *Kanban* System and Conventional Systems .. 435
 Functions and Rules of *Kanban* ... 440
 How to Determine the Variety and Quantity of *Kanban* 442
 Administration of *Kanban* ... 447

9 **Visual Control** ... 453
 What Is Visual Control? ... 453
 Case Study: Visual Orderliness (*Seiton*) 459
 Standing Signboards .. 462
 Andon: Illuminating Problems in the Factory 464
 Production Management Boards: At-a-Glance Supervision 470
 Relationship between Visual Control and *Kaizen* 471

Index ... I-1

About the Author ... I-31
Volume 4

10 Leveling .. 475
 What Is Level Production? .. 475
 Various Ways to Create Production Schedules 477
 Differences between Shish-Kabob Production and Level Production 482
 Leveling Techniques .. 485
 Realizing Production Leveling .. 492

11 Changeover .. 497
 Why Is Changeover Improvement (Kaizen) Necessary? 497
 What Is Changeover? ... 498
 Procedure for Changeover Improvement 500
 Seven Rules for Improving Changeover 532

12 Quality Assurance .. 541
 Quality Assurance: The Starting Point in Building Products ... 541
 Structures that Help Identify Defects .. 546
 Overall Plan for Achieving Zero Defects 561
 The Poka-Yoke System ... 566
 Poka-Yoke Case Studies for Various Defects 586
 How to Use Poka-Yoke and Zero Defects Checklists 616

Volume 5

13 Standard Operations .. 623
 Overview of Standard Operations .. 623
 How to Establish Standard Operations 628
 How to Make Combination Charts and Standard Operations Charts ... 630
 Standard Operations and Operation Improvements 638
 How to Preserve Standard Operations 650

14 Jidoka: Human Automation .. 655
 Steps toward Jidoka ... 655
 The Difference between Automation and Jidoka 657
 The Three Functions of Jidoka ... 658
 Separating Workers: Separating Human Work from Machine Work ... 660
 Ways to Prevent Defects .. 672
 Extension of Jidoka to the Assembly Line 676
15 Maintenance and Safety .. 683
 Existing Maintenance Conditions on the Factory Floor683
 What Is Maintenance? ..684
 CCO: Three Lessons in Maintenance689
 Preventing Breakdowns ..683
 Why Do Injuries Occur? ...685
 What Is Safety? ...688
 Strategies for Zero Injuries and Zero Accidents689

Volume 6

16 JIT Forms ...711
 Overall Management ..715
 Waste-Related Forms ..730
 5S-Related Forms ...747
 Engineering-Related Forms ..777
 JIT Introduction-Related Forms ...834
Flow Production

Why Inventory Is Bad

Why Does Inventory Accumulate?

Every year, when heavy rains hit the forest, the streams and rivers suddenly swell and sometimes overflow. Most river flooding is caused by localized downpours. The rivers become wider and sometimes adjacent forks are reunited as a single large river.

In factories, goods and materials should flow in the factory much as water flows in a river. But things tend to accumulate. We could say that the “river”—the flow of in-process inventory—tends to “flood.” Needless to say, it would be better if this river of in-process inventory flowed smoothly and briskly. The following are some of the main reasons for such “flooding” in factories.

Reason 1: Inventory flow is behind the times

It has been a long time since large lot production gave way to the era of wide-variety, small lot production, but some manufacturers still have not caught up. They try to use the old “shish-kabob” production schedules to turn out orders for a wide assortment of product models in small lots and, not surprisingly, “floods” often occur at certain processes.
Reason 2: Old habits are hard to change
Some factory managers understand quite well that this is the era of wide variety and small lots. But they do not have the energy and courage to let go of old familiar ways and make the necessary changes. Rather than trying to “go with the flow,” they are just trying to stay afloat for the years remaining until their retirement age.

Reason 3: Unbalanced capacity brings unbalanced inventory
Inventory shoots through the “rapids” of high-capacity processes, but it naturally gets backed up when it reaches processes having lower capacity.

Reason 4: Inventory is sometimes gathered from several processes
Some processes, such as painting and rinsing processes, often use large equipment that can handle in-process inventory sent from several processes. Naturally, the in-process inventory from several processes accumulates at such large equipment before being processed by it.

Reason 5: Inventory must wait to be distributed from large processes
This is what happens at the downstream side of the large equipment described under Reason 4. Each kind of processed inventory must wait its turn to be sent on to one of several downstream processes.

Reason 6: Inventory must wait for a busy operator
Sometimes operators work sequentially on a number of machines. We call this “caravan” operations. In-process inventory tends to gather at each machine until the operator gets a chance to process it. In other words, inventory gathers wherever the operator is not.

Reason 7: Inventory accumulates when operators dislike changeovers
Inventory tends to gather at presses and other processes where changeover is regarded as arduous work. The operators would much rather do fewer changeovers by handling large lots.
Reason 8: Inventory accumulates in factories that have “end-of-the-month rushes”
This tends to happen at factories that have monthly volumes to meet. The assembly line is especially busy during the last five days of the month. In fact, workers from all over the factory are called over to the assembly line for the end-of-the-month rush. By the middle of the month, the factory is chock-full of in-process inventory, lined up to be assembled during this rush period.

Reason 9: Inventory accumulates due to faulty production scheduling
Sometimes production planners are not knowledgeable enough about inventory and include some noninventory items as inventory. Such misunderstandings can lead to incorrect inventory distribution planning when drawing up production schedules.

Reason 10: Inventory accumulates when people forget to revise standards
Once standards are set for lead-time, lot sizes, or acceptable defect rates, people forget to revise them. Soon workshops start producing extra goods in anticipation of a certain percentage of defectives. Surplus production means surplus inventory.

Reason 11: People tend to store up “just-in-case” inventory
Things do not always go as planned. Sometimes, new developments in a company’s business activities will require a sudden change in production scheduling. All company divisions—from sales to management, purchasing, and manufacturing—like to keep a “safety margin” of extra inventory around just in case a sudden change of plans occurs. “Safety” is a misleading term here. What these inventory buffers provide is not safety, but security for the people in charge.

Reason 12: Inventory accumulates due to seasonal adjustments
No product sells at the same rate all year-round. Some sell in cycles, and others have distinct seasons. No one in
factories likes to deal with sudden and dramatic changes in production. Instead, they try to smooth out the seasonal transitions by producing ahead of time in anticipation of extra orders when the product’s season arrives. Obviously, this requires some stockpiling of inventory.

Thus, there are at least a dozen major reasons why inventory tends to accumulate in factories and throughout entire companies. Unless the company’s various departments come to grips with these reasons, inventory will keep on building until it begins to sap the company’s strength.

Why Is Inventory Bad?

Most people regard inventory as a “necessary evil.” They feel especially strong about an inventory’s necessity when sales are brisk, but when sales sag inventory starts looking evil. So it is a necessary evil—necessary today and evil tomorrow.

While most Western companies tend to look upon inventory as a necessary evil, most Japanese companies emphasize its wickedness. In fact, attitudes toward inventory is one key characteristic of the difference between Western and Japanese manufacturing systems.

In Japan, inventory is regarded as being so evil that it is often called “the company’s graveyard.” Japanese managers tend to view inventory as the root of all evil and a likely cause of poor performance in any business activity.

But why is inventory so evil? Again, there are several reasons:

Reason 1: Inventory adds to the company’s interest payment burden

Inventory solidifies a lot of capital (as inventory assets) that could otherwise be turned over for a profit. It puts pressure on operating capital and raises the interest payment burden. Therefore, it is clearly an obstacle to successful business management.
Reason 2: *Inventory incurs maintenance costs*

Inventory is an investment of capital that does not of itself contribute to profits. Moreover, inventory has to be managed and maintained, which adds to costs: warehouse lease fees, insurance premiums, property tax, and so on.

Reason 3: *Inventory means losses due to hoarded surpluses and price cutting*

When there is excess inventory, unused items undergo age-related deterioration. They get hoarded up due to their obsolescence or they are sold off at rock-bottom prices, both of which hurt corporate profitability.

Reason 4: *Inventory takes up space*

Naturally, any inventory we have takes up a certain amount of space. Eventually, the piles of inventory start spilling over into the warehouse aisles, which leads to building new shelves and even a new warehouse.

Reason 5: *Inventory causes wasteful operations*

Inventory causes goods to be retained. Retained goods always require some kind of conveyance. Conveyance never adds value to the product. Warehouse operations include picking up, setting down, counting, and moving—none of which add value (therefore, all of which are wasteful).

Reason 6: *Inventory requires extra management*

Warehouse operations need to be managed. Managers have to keep track of when items are received at the warehouse, when they are shipped out, and the current amount of each item in the warehouse.

Reason 7: *Inventory requires advance procurement of materials and parts*

Companies that keep large warehouses make it a practice to order materials and parts even before client orders come in. These parts and materials, however, do not always match what is actually required by the orders.

Reason 8: *Inventory incurs wasteful energy consumption*

Building, operating, and managing warehouses means greater energy costs incurred by electric, pneumatic, and hydraulic equipment.
These eight are just the more obvious reasons why inventory is bad. We have not even begun to consider other reasons related to capital turnover, hoarding surpluses, and the like.

What, more than anything else, makes inventory evil? This question deserves some sober contemplation. Let us look at a few of the reasons that we have not yet covered.

First, there is the greater interest payment burden incurred by inventory. Let us assume that a certain company has plenty of money, and does not need to worry about paying interest. The managers at this company see no harm in having several warehouses for its factory. “Hoarding up surpluses” is a problem at these warehouses, but the managers think the way to solve this problem is by making products that tend to sell briskly.

Let us reconsider the problems caused just by taking up space. In a huge warehouse, wasted space is rarely noticeable. If anything, we would get the feeling that not making use of the immense warehouse is somehow wasteful. But the real waste lies in having such a large facility to begin with. No matter how much capital a company has, no matter how quickly its products sell, and no matter how much space its factory sites include, inventory remains just as evil a thing as ever.

So what might we say is the real reason why inventory is bad? I have found this most basic reason is: Inventory conceals all sorts of problems in the company.

There are a countless number of factories in the world. Each factory must deal with a wide variety of problems every day. Problems pile up even at the best factories, and there is no such thing as a problem-free factory.

Let us compare problems in factories to rocks that pile up at the bottom of a pond. When the pond is full of water, we do not see any of the rock piles, but if we empty the pond, they suddenly become obvious. Figure 5.1 illustrates this analogy.

Keeping a large inventory of finished products in the warehouse enables the company to deal with the demands of
• High water volume (inventory volume) conceals the rocks (problems)

• Low water volume (inventory volume) reveals the rocks (problems)

Figure 5.1 How Inventory Conceals Various Problems Affecting the Company.

product diversification without having to address the problem of why it takes so long to switch production from one product model to another. It also enables the company to keep up with schedule changes without having to question why schedule changes are so hard to keep up with in the first place. Plentiful warehouse supplies can also help fill in the production output
gaps caused by equipment breakdowns, again without having to take preventive action against the problem.

In short, a “well-stocked warehouse” gives people the illusion that they are solving these kinds of problems. Instead of solving problems, they are just avoiding them.

As long as the company avoids problems by keeping a large inventory, the problems continue to grow and lay down deeper roots. The more unsolved problems there are, the more inventory the company needs to compensate for them. Eventually, the company becomes visibly weaker.

Today’s highly competitive era is no time to waste money and energy on covering up problems. Challenging trends, such as product diversification and shorter delivery deadlines, create new problems every day. The successful companies are the ones who not only learn how to respond rapidly to today’s fast-changing marketplace, but also know how to apply the same swiftness in dealing with problems—not avoiding them.

What Is Flow Production?

Differences between Shish-Kabob Production and Flow Production

I mentioned earlier that the factory “river”—the flow of in-process inventory—tends to “flood.” A main reason for such flooding is conventional lot production, which we might also refer to as “shish-kabob production.” The shish-kabob image is a natural one—workpieces move along in little clumps. In other words, they are grouped into batches for batch processing at each workshop along the line. We can look at the differences between shish-kabob production and flow production in various ways (see Figure 5.2). Let us look at some of these in more detail.
<table>
<thead>
<tr>
<th>Type of production</th>
<th>Shish-kabob production</th>
<th>Flow production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point of comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach to processing</td>
<td>Adds processing only</td>
<td>Adds processing and raises added value</td>
</tr>
<tr>
<td>Equipment layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach to rationalization</td>
<td>One worker handle several similar machines</td>
<td>One worker handles several different machines</td>
</tr>
<tr>
<td>Operators</td>
<td>Single-skilled operator</td>
<td>Multi-skilled operator</td>
</tr>
<tr>
<td>Proficiency</td>
<td>Worker repeats the same operation</td>
<td>Worker repeats a group of operations</td>
</tr>
<tr>
<td>In-process inventory</td>
<td>A lot</td>
<td>Almost none</td>
</tr>
<tr>
<td>Lead-time</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Equipment</td>
<td>High-speed, general-purpose, large, costly, emphasis on capacity utilization</td>
<td>Slow, specialized, small, inexpensive, emphasis capacity utilization</td>
</tr>
<tr>
<td>Production orientation</td>
<td>Narrow variety and large lots</td>
<td>Wide variety and small lots</td>
</tr>
<tr>
<td>Space</td>
<td>Takes up a lot of space</td>
<td>Does not take up as much space</td>
</tr>
<tr>
<td>Approach to efficiency</td>
<td>Emphasis on efficiency within processes</td>
<td>Emphasis on efficiency throughout the company</td>
</tr>
<tr>
<td>Conveyance</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Quality</td>
<td>Quality problems discovered only after the lot is produced</td>
<td>Minimization of defects that cause quality problems</td>
</tr>
</tbody>
</table>

Figure 5.2 Comparisons of Shish-Kabob Production and Flow Production.

Difference 1: Approach to processing

Shish-kabob production uses large groups of workpieces at each processing point within a process station. These groups (lots) are retained at the process until all of the units in the lot are completed. By contrast, flow production means that once each workpiece has been
processed, it is sent to the next process for immediate processing. This continuous moving flow continues until each workpiece is completed as a finished product. There is little or no retention of workpieces at the processes.

Difference 2: Equipment layout

For shish-kabob production, the equipment layout usually has equipment grouped into rows of machines that serve the same function. This is the “job shop” type of equipment layout. Typical press workshops and lathe workshops are two examples of this. Since flow production means processing and sending along one workpiece at a time, there should be very little material handling required, and preferably none at all. That is why flow production requires that equipment be laid out according to the sequence of processes. Workshops are no longer “press workshops” or “lathe workshops.” Instead, the equipment is laid out according to the product being made. We call the equipment layout in such flow production workshops a “flow shop” or a “line” layout.

Difference 3: Approach to rationalization

In conventional job shops, rationalization often means increasing the number of equipment units operated by one worker. For example, in a press workshop, rationalization might mean assigning three presses to a worker who has been operating only two. In a flow shop, we cannot assign several units of the same type of equipment to a single worker, since that would interrupt the one-piece flow of workpieces from process to process. Instead, individual workers learn to operate several different kinds of equipment corresponding to the different processes along the line. We call this “multi-process operations.” (For a more detailed description of multi-process operations, see Chapter 6.)

Difference 4: Operators

No matter how many equipment units each worker operates in conventional job shops, the worker sticks to a
single set of skills as a press operator, a lathe operator, or whatever. In flow shops, workers learn several sets of skills needed to operate a series of different processes, such as press → drilling → bending. We call such workers “multi-process workers.”

Difference 5: In-process inventory

In the shish-kabob production system, in-process inventory is found as lots retained between processes and between machines. In flow production, where workpieces continually flow from one process to another, there is rarely any in-process inventory retained between processes or machines.

Difference 6: Lead-time

Shish-kabob production tends to create long lead-times because of the many times when lots are retained while waiting for the previous lot to be processed or for the rest of the same lot to be processed. When flow production keeps workpieces moving all the way until the final process, the lead-time can be reduced to the level of the total processing time.

Difference 7: Equipment

Shish-kabob production lacks any kind of overall flow from raw materials processing to final product assembly. This makes it very difficult to sense rhythm in the factory operations. The only kind of rhythm that might be evident is the pitch at which individual workers operate individual machines. This is called the “individual rhythm.” Shish-kabob production managers seek to improve factory operations via greater speed, which requires general purpose machines that can quickly process various types of workpieces. However, general purpose machines tend to be large and expensive. When large and costly machines are installed, the factory managers naturally become concerned with maintaining a high capacity utilization rate by turning out more and more products. Meanwhile,
the factory becomes one that is more concerned with its equipment than with its customers.

Flow production takes an almost completely opposite approach by emphasizing a smooth production flow all the way from materials processing to final product assembly. There is a clear overall rhythm to production, and the tempo of this rhythm is set by customer orders. Each machine along the production line is like a bar of music. There is no need to hurry the tempo. Production should always be slow enough to remain in the overall flow. There is also no need to hurry when changing over to other product models. Each machine should serve only one main function, operating like a bar of music in the symphony of production. Each machine should be a specialized machine that emphasizes quality over speed. These specialized machines should serve only the minimum required function and should be compact enough to fit right into the production line. Naturally, these slower, more specialized machines are inexpensive and therefore do not invite concern over capacity utilization rates. Instead, the major maintenance concern is to ensure a high possible utilization rate (that is, high serviceability) to prevent disruptions in the production flow.

Flow Production within and between Factories

“Flow” can mean the gurgling flow of tiny brooks amid the rocks or the quiet majestic flow of a wide river spanned by long bridges. In the factory, the smaller parts lines are like the brooks and the large final assembly lines are like the wide rivers. The streams eventually converge into rivers, and the flow (of goods) ultimately reaches the sea (the marketplace).

Factories need to have a smooth flow of operations, and the basic method for creating such a flow is by making
individual improvements. These improvement “points” add up until they form a “line” of improvements. This line is the flow between processes.

Eventually, we also need to have a smooth flow of production operations between manufacturers and the vendors, subcontractors, and wholesalers or distributors that they work with. This kind of flow is a vertical flow between factories, and the corresponding improvements are called vertical improvements.

Therefore, when we discuss flow production, we must be aware of the kind of flow production we are talking about. The main distinction to make is between flow production within a factory and flow production between a factory and another factory or business.

1. Flow production within a factory. To establish this kind of flow production, we must eliminate the in-process inventory that accumulates at and between processes as “flood water” or “shish-kabob clumps.”

2. Flow production between factories. We must also establish a smooth flow of operations between our own factory and the various subcontractor factories, vendors, distributors, and other businesses that our factory deals with.

Flow Production within the Factory

Eight Conditions for Flow Production

Making things requires various techniques. Many of the techniques used in manufacturing are based on two engineering technologies: pressing and drilling (or punching).

So we might ask whether JIT improvement is meant to also improve these essential engineering technologies. The answer is yes. JIT improvement means radical improvement, which means it goes into the very basic engineering technologies. But that is not the main point of JIT improvement.
The engineering technologies, such as pressing and drilling (or punching), are technologies for processing workpieces.

Of course, no matter how many times a press adds processing to a workpiece, it will not be enough to turn out a finished product. Manufacturing products requires an assortment of materials plus several engineering technologies, among which pressing is just one.

The main work of JIT improvement is to link these engineering technologies in a production system that is attuned to customer needs. (See Figure 5.3.)

While engineering technologies add processing to workpieces, linked technologies raise the degree of processing. Accordingly, the basic aim of JIT production is to make things one at a time, in a smooth flow, to prevent defects.

The following is a list of eight conditions that must be met to establish one-piece flow production.

Condition 1: One-piece flow
Condition 2: Lay out equipment according to the sequence of processes
Condition 3: Synchronization
Condition 4: Multi-process operations
Condition 5: Training of multi-process workers
Condition 6: Standing while working
Condition 7: Make equipment compact
Condition 8: Create U-shaped manufacturing cells

Condition 1: One-Piece Flow

One-piece flow is the most basic of all eight conditions; it is where flow production starts and ends. One-piece flow refers to the condition in which each workpiece must be processed and passed along the production line by itself, and that includes assembled quasi products. One-piece flow sounds simple enough in theory, but putting it into practice can be very difficult indeed.

Whenever we inspect the production line and find places where “shish-kabob clumps” of in-process inventory have accumulated, we need to find out why it happened. Perhaps the equipment units are not lined up according to the processing sequence, or perhaps the processes are not synchronized. There is always some reason, and it usually includes a human factor: resistance to change. That is why it is so important that everyone understands what JIT is about from the outset. Without prior understanding, things are bound to fail.
JIT production means ideas and techniques for the total elimination of waste. We must begin by uncovering all of the deeply rooted concealed waste in the factory. Switching to one-piece flow is the best way to do this. If I may paraphrase the JIT definition: *One-piece flow means ideas and techniques for the total uncovering of concealed waste.* (See Figure 5.4.)

Unfortunately, one-piece flow is not something we can achieve simply by rearranging the equipment according to the processing sequence and retraining the workers in new operation procedures. Rather, it is a first step in a process that includes uncovering concealed waste in the factory. That is why we should begin by switching over to one-piece flow *using the current equipment layout and operation procedures.* This will show us where the hidden waste is, such as conveyance waste, waste caused by having large equipment, and so on. Once we have uncovered all of this waste, we are more than halfway there since we have learned how to redesign the layout to eliminate the conveyance waste (by eliminating conveyors), large equipment waste (by using only compact equipment), and other waste.

The key to success in all of this is whether or not we are truly resolved to implement one-piece flow production.

Condition 2: Lay Out Equipment according to the Sequence of Processes

After we have started giving one-piece flow a try, we first notice conveyance waste staring us in the face. If the line was conveying workpieces between processes in lots of 100, it suddenly becomes obvious that 100 units of conveyance waste had been concealed in each lot.

One-piece flow changes all of that. Once a process is completed, the workpiece is immediately moved along to the next process. Under current conditions, that means each workpiece must be moved along via the existing conveyance system. The amount of time and trouble built into that system suddenly becomes 100 times greater. That makes it obvious
enough for the workers to notice the tremendous amount of waste involved. With that awareness, they are ready to start changing the equipment layout.

In redesigning the equipment layout, they now know the idea is to minimize conveyance or, better yet, eliminate it altogether. They can do this by lining up the equipment according to the processing sequence. This kind of line up is the standard for all flow shops and flow-oriented production lines.

Condition 3: Synchronization

Once we have set-up the equipment for flow production, we need to consider how fast the flow should be; in other words, at what pitch the processes should be operated. Unless we have a common pitch among processes, workpieces will accumulate at the slower processes and cause the flow to “flood.”

Synchronization means maintaining the same pitch among the various processes. In the final analysis, the pitch should be determined (as so many minutes and seconds) by the amount of orders from customers. This time figure is called the cycle time. The cycle time sets the rhythm for the “music” of manufacturing. (Cycle time is discussed in more detail in Chapter 10 of this manual.)

Condition 4: Multi-Process Operations

One-piece flow production can be achieved without any multi-process operations. (See Chapter 6 for further description of multi-process operations.) Instead, we can simply assign one worker to each process and have them process and hand along workpieces according to the established pitch. Figure 5.5 illustrates this kind of arrangement, which we might call “hand-transferred one-piece flow.”

One problem with the hand-transferred one-piece flow arrangement is that requiring one worker at each process makes it difficult to add or subtract workers to adjust for changes in scheduled output. Such adjustments are the aspect of JIT known as “manpower reduction” (described in Chapter 7).
The idea is to have just the minimum amount of manpower needed to produce the scheduled amount of output.

Another problem with the hand-transferred one-piece flow arrangement is that it encourages workers to think of themselves in strictly defined job roles, such as press operator, drill operator, or inspector. This reduces manpower flexibility and makes it hard for the idea of “building quality in at each process” to take hold among the workers.

These are two reasons why JIT production calls for flow production using multi-process operations. Multi-process operations move vertically along the production line by having workers operate as many processes as possible. This is quite different from multi-unit operations, in which workers expand their work horizontally in the production line by operating several of the same type of machines performing the same process.
Condition 5: Training of Multi-Process Workers

Multi-process workers are workers trained to handle several processes together. Conversely, we call workers that handle only one process “single-process workers.” (See Chapter 6 for a detailed description of multi-process workers.)

Training multi-process workers is a key step toward achieving JIT flow production. This training can be extended company-wide over the short term to include:

- Thorough standardization of machines and other equipment so that anyone can more easily learn to operate them;
- Equally thorough standardization of operations, eliminating special or exceptional cases;
- Company-wide multi-skill training as an important part of company-wide improvement.

Condition 6: Standing While Working

In most machining workshops, workers traditionally stand while working. However, assembly lines such as at home electronics and electrical equipment manufacturers are usually operated by workers who sit while working. The switchover to standing while working can create serious problems at such places. It may take a long time indeed before such assembly workers are convinced of the need to stand while working. (One wonders if it might even take as long as it took our primeval ancestors to switch from walking on all fours to walking on their legs only!)

About the only way to succeed in this difficult transition and overcome workers’ reluctance to stand is by getting the entire company deeply involved—including the president and other top managers—in pointing out the advantages that standing while working brings, i.e., easier movement, helping each other out when necessary, correction of unbalanced operations, multi-process operations, and much more.
Condition 7: Make Equipment Compact

If one workpiece is about as big as a fist, then a lot of ten workpieces would be about the size of a bread box and a 100-workpiece lot would be as large as a washing machine.

To handle lots of 100 workpieces each, we need a conveyor that can easily move washing machines. Likewise, the processing machines and other equipment must also be able to handle washing machine-size lots.

In other words, the equipment has to be big, so big that much of it will not fit into a small production line. In most cases, we must set such large equipment aside somewhere as a processing “island.”

Sometimes, those expensive general purpose machines advertised as being able to do just about anything end up doing nothing well. JIT production has no use for machines like these. Instead, we should try to use only compact

Figure 5.6 Flow Production Examples.
machines that can be arranged and rearranged into the line at a moment's notice and that are not so expensive that we have to worry about their capacity utilization rates.

Condition 8: Create U-Shaped Manufacturing Cells

This is another topic that does not directly relate to one-piece flow production. In some cases, it is fine to have a straight line for flow production. However, if we have one-piece flow production using multi-process operations, it is wasteful to require a worker who operates a series of processes along a straight line to walk all the way back from the final process to the starting one to get the next workpiece. This is where U-shaped manufacturing cells come in. (See Figure 5.6.)

What Is the Best Way to Eliminate This Kind of Waste?

We should try to arrange the input and output points as close together as possible. For short, we call this the “I/O matching principle.” The closer the input and output points are, the less walking waste we will create.

These curved lines are called U-shaped manufacturing cells because they usually end up having a shape like the letter “U.” However, they can just as well be arranged like circles or triangles if that works better. The exact shape of the cell should be determined based on such factors as the overall flow of goods in production, elimination of waste, and available space.

Of the above eight conditions, the most important by far is the first: one-piece flow. If we think switching to one-piece flow is too difficult and give up on it, we may end up handling lots of ten workpieces without ever realizing how much waste those breadbox-size lots create. People will start assuming that ten-unit lots are the smallest lot size possible in flow production.

But if we hang in there and manage to establish one-piece flow, we will hold the key to great success in eliminating waste.
The other seven conditions are like walls that protect the fortress of one-piece flow. Among these, Condition 4 (multi-process operations) would take prominence as the front wall and Condition 2 (lay out equipment according to the sequence of processes) would form the rear wall.

We can group these eight conditions according to the production factors they relate to most directly.

1. Equipment
 a. Condition 7: Make equipment compact

2. Equipment layout
 a. Condition 2: Lay out equipment according to the sequence of processes
 b. Condition 8: Create U-shaped manufacturing cells

3. Operation methods
 a. Condition 1: One-piece flow
 b. Condition 3: Synchronization
 c. Condition 4: Multi-process operations
 d. Condition 6: Standing while working

4. Operators
 a. Condition 5: Training of multi-process workers

Let it be clear from the outset that we can expect to run into many obstacles—equipment problems, capacity imbalances, and the like—as we work to establish these eight conditions in factory workshops. But the biggest obstacle is human resistance. We have to get people to drop all those tired old ideas, such as “This equipment can’t be moved,” or, “We’ll lose money if we don’t have lot production.”

The best way to ensure success in establishing these eight conditions for one-piece flow production is to first get the people to “go with the flow” of JIT production.
Steps in Introducing Flow Production

In establishing flow production—a basic part of JIT production—we need to rearrange the production equipment, but we do not have to find the perfect arrangement the first time. Instead, we should follow a series of experimental steps that
well help us get closer to success. Figure 5.7 illustrates how various factors interrelate in flow production.

Let Us Look at Each of These Factors, Starting from the Groundwork—Two Types of Groundwork Must Be Laid before We Can Start Introducing Flow Production

1. The awareness revolution

Everyone at the company should be taught to discard long-established notions about everything from lot sizes to inventory and conveyance and to understand and support the JIT production philosophy. JIT study groups and in-house seminars are useful means of establishing the JIT awareness revolution. (See Figure 5.8.) (The awareness revolution is described in detail in Chapter 2.)

JIT production can be described and discussed in study groups and seminars. To really learn it, however, we have to practice it. After we have practiced the various procedures and steps for a while, we begin to develop a “feeling” for JIT; only then are we truly learning it in both heart and mind.

2. The 5S’s

The 5S’s are described fully in Chapter 4. The S’s are the first letters in the Japanese words *seiri* (proper arrangement), *seiton* (orderliness), *seiso* (cleanliness), *seiketsu* (cleaned up), and *shitsuke* (discipline). The first two S’s are the most important, and use two indispensable tools: the red tag strategy and the signboard strategy. All improvement activities should start with reinforcing the 5S’s, particularly by using these two strategic tools.

Preparation for Flow Production

Once we have made some headway in establishing the awareness revolution and the 5S’s, we are ready to enter the preparation stage for flow production. We can facilitate making improvements for flow production by analyzing the production data needed for building a model line, then selecting a model line.
As a third preparatory step, we need to install casters on equipment units to facilitate their rearrangement into new layouts.

Preparatory Step 1: Production Analysis

Three types of analyses will help us understand flow production: P-Q analysis, arrow diagrams, and process path tables. We can use these three tools to eliminate waste and pave the way for lining up equipment according to the processing sequence.

P-Q analysis. The P stands for products and the Q for quantity (production output). By analyzing the relation between products and quantity, we can make a distinction between “flow of quantity” and “flow of product models.” This will help us line up processes for flow production. The steps in P-Q analysis are described below:

Step 1: Obtain three or six months’ data on product (or parts) and production output.

Step 2: Figure the total production output from the obtained data, list products in order of highest quantity to lowest quantity, then find their proportionate percentages. Write these on a P-Q analysis list, such as the one shown in Figure 5.9.

Step 3: Create a P-Q analysis table based on the P-Q list. (See Figure 5.10.) The vertical axis on this table indicates
the production output (quantity) and the horizontal axis shows the products. Then we can use the output amounts to make an analysis of product groups A, B, and C.

Step 4: Design a line of processes based on the P-Q analysis list. As shown in Figure 5.11, the A group is a specialized line for building quantity, while the B group and C group lines are ordinary lines that build product models.
The key factors in ordinary lines are Group Technology (GT) lines and changeover. GT lines are lines that turn out different products (or parts) that have similar process paths and can therefore use the same line configuration. We group such lines together as one line in the process path tables. We can improve GT lines by combining tool functions into fewer tools and by establishing simple changeover procedures.

Arrow diagrams. Before establishing flow production in the factory, we need to clarify how goods will flow and remove major forms of waste from retention and conveyance points. Arrow diagrams are tools for doing just these things. (Arrow diagrams are described in Chapter 3.)
Process route tables. Process route tables enable us to see what kind of machines and other equipment are needed for processing a certain workpiece and what path these processes should take. As such, they are indispensable aids for creating ordinary lines and grouping workpieces. These grouped lines are called GT lines. (See Figure 5.12.)

As can be seen in Figure 5.12, machines and other equipment are listed horizontally on the table and names of parts or other items are listed vertically. This provides a clear indication of which parts are handled by which machines and in which order. Once we can see this, we can more easily find the parts that use the same or similar machines in the same or similar order and group those parts together in a GT line. The main purpose of this type of GT line is to eliminate or greatly simplify the changeovers needed when switching to new product models.

Preparatory Step 2: Select a Model Line

Start this step by finding the most enthusiastic workshop in the factory, then make that workshop the model line. You can choose the model line based on the workshops involved in making a certain product, or based on specific processes or workshops. The important thing is to establish a model that clearly shows to everyone in the company how flow production works in a line and what kinds of things it involves.

The first thing to inquire about when selecting a model is the enthusiasm of workshop-level leaders, such as the foremen. Workshops that have weak leadership are much more likely to fail than those with strong leadership. Strong, energetic workshop leaders are a good sign of a highly active workshop.

Once you select a model line, put up a large sign with the words “JIT Model Line” and the target date for completion of the line. This will help cultivate the seeds of awareness and generate enthusiasm among the workshop staff for being chosen as leading examples for their factory. It will also help draw attention to what is happening in the model line.
Preparatory Step 3: The Caster Strategy

It has always been a good idea to make equipment as movable as possible so that it can be easily rearranged into the most efficient layout for the particular product model being manufactured. However, many equipment units are bolted to the floor, the usual reasons being that they are either too bulky and heavy to move, or their high-precision mechanisms are too fragile to be moved. Once equipment gets bolted down, we must move the workpieces to the equipment rather than vice-versa. This makes one-piece flow production too difficult, encouraging factories instead to opt for shish-kabob production. Bolted-down equipment can make layout improvements difficult indeed. We need to put casters on as many equipment units as possible, so that we can rearrange machines, work tables, and other equipment whenever the need arises. In JIT, this is called the “Caster Strategy.”

A word of caution about the caster strategy: Be sure to install casters on machines and work tables in such a way that they do not significantly change the height of the equipment. The photo in Figure 5.13 shows a “caster dolly” device that avoids having to install casters directly underneath the equipment. This device raises the equipment’s height only slightly.
There should be about 10 millimeters of clearance between the frame and the floor to ensure smooth movability.

Procedure for Flow Production

We have finished the preparation for introducing flow production: We have launched the awareness revolution establishing the 5S’s, and put various tools and strategies to use, such as production analysis, model line selection, and the caster strategy. Now it is time to follow the steps for introducing flow production.

Introductory Step 1: Use One-Piece Flow to Flush Out Waste

Flow production has two stages. The first stage comes before establishing JIT production and is concerned primarily with using one-piece flow to reveal concealed waste in the factory. The second stage is where we must establish the various conditions needed for full-fledged flow production, in which one-piece flow can be maintained without creating waste. Let us have a closer look at each of these stages.

Stage 1: Revealing concealed waste with one-piece flow.

At this stage, we need to “force” one-piece flow onto the current set-up, which means the current equipment, layout, and operation methods. This can be for just two processes, if you wish. Even if the workshop staff is reluctant and uncooperative, this “experiment” in one-piece flow production must be carried out.

At this point, it is best if we can train single workers to handle all of the processes that have been switched over to one-piece flow, but it can be done with a worker at each process, if necessary. It does not matter how odd or unorganized things look: Just carry out one-piece flow under the current conditions. This alone will flush
out waste related to conveyance, large equipment, and unbalanced operations.

When waste has been revealed in this way, we confirm the waste and then eliminate it. This should not cost money. All we need is our wits and our muscles. This is what making improvements is all about.

This experimental switchover to one-piece flow for flushing out waste is also very important as a vehicle for teaching the spirit of JIT right from the start, before people have come to understand JIT fully. In other words, they are learning the form first to get a feeling for JIT. In this way, JIT improvement is an art similar to the oriental martial and aesthetic arts, such as karate, judo, flower arrangement, and the tea ceremony.

Figure 5.14 shows two diagrams of a diecast deburring line. This line includes two processes—a pressing process and a drilling process, each in a different workshop. The current set-up is for lot production; workpieces are handled in 500-unit lots.

Under this lot production set-up, no one notices the waste involved in conveying 500-unit lots along a distance of 120 meters. However, when we switch this over to flow production, each individual unit must be conveyed the 120 meters, and the waste becomes quite obvious. Once everyone has been impressed by how much concealed waste there was in conveyance alone, we can make an improvement to eliminate that waste. Obviously, this first switch to one-piece flow will mean considerably lower productivity. But making improvements involves more than simply raising productivity. Lowering productivity by revealing waste is a “teaching tool” that enables us to clearly recognize the waste.

Stage 2: Maintain one-piece flow so as not to create waste.

Once we have understood where waste lies in our conveyance system and operational imbalances, we
can change the equipment layout into a closely-linked one-piece flow line to prevent this waste from being created again.

Figure 5.15 shows a line of cutting processes for automotive parts. Before making improvements, this line included widely separated workshops, was operated by four workers, and had multi-process operations only for some of the cutting processes.
Then came the improvements. The scattered equipment units were brought together into a flow-oriented line from start to finish, and everything was set-up for one-piece flow production. This enabled the total elimination of in-process inventory, made the overall flow clearly visible and comprehensible to everyone, and enabled early detection of defects. Moreover, human work was separated from machine work, and this enabled a manpower reduction from four workers to just two.

Introductory Step 2: Arrange the Equipment in the Order of Processing

So far, we have pointed out conveyance waste, eliminated the conveyance system, set-up a way to move workpieces with a minimum of material handling, and rearranged the equipment layout. At this point, we are still faced with several problems. Many equipment units do not have casters and are difficult to move. And some of the larger equipment units are too big to fit directly into the line, which creates bottlenecks
at the isolated equipment units. Therefore, our next step is to find ways to make the equipment more movable and compact. Again, we should be using our wits and not spending much money to make these improvements.

There is no need to use large and expensive general purpose machines that can quickly process various kinds of workpieces in large lots. Instead, we need to be only as fast as the cycle time, and we must stress the need for compact, inexpensive machines that specialize in reliable, high quality processing of certain types of workpieces. To do this, we must develop skills in grasping the basic function of each process and selecting or designing equipment that serves precisely that function.

Figure 5.16 shows a newly developed compact shotblaster. Previously, lots of 500 units each were divided into large batches and loaded onto pallet containers for shotblasting.
They used a large shotblaster which can handle large batches, but cannot prevent the diecast units from colliding and denting each other. About 10 percent of the units were rendered defective by this shotblaster. The shotblaster's batch processing also meant that there were large piles of in-process inventory on either side of the shotblaster.

To eliminate dent defects and in-process inventory while reducing manpower, this company worked with the equipment's manufacturer in developing a compact shotblaster that could fit into the flow-oriented line.

Figure 5.17 shows an example of a compact washing unit. This washer is used to wash flax from soldered motor parts on a motor assembly line. Prior to this improvement, the parts were conveyed to a larger washer. This became quite impractical under one-piece flow production, especially since the previous system used lots of 200 workpiece units. The company made this compact washer, which was able to be inserted into the conveyor line, and this rearrangement alone eliminated the conveyance waste, retention waste, and manpower waste created by the large washing unit.

Preparatory Step 3: Standing While Working

We have gathered two or three processes into a line and have left the operators on their stools to operate one process each using one-piece flow instead of shish-kabob lots. The seated operators can hand-pass the individual workpieces down the line. Once this set-up starts working smoothly, we are ready for the first step in multi-process operations: standing while working. The operators should first learn to handle one process at a time on their feet. Standing while working has different characteristics depending upon the type of line involved. Let us look at how standing while working can be established first for an assembly line and then for a processing line.

Standing while working at an assembly line—Most assembly operations use conveyors to produce an even
production flow. Figure 5.18 shows workers standing while working at a VCR assembly line.

The photo in Figure 5.18 shows a free-floating assembly line that is 90 meters long. The workers in this photo had been seated while working until just a few days before the photo was taken. When the workers were seated, they tended to wait until workpieces were directly in front of them before
they picked them up to assemble them. Because the assembly workers were not balanced well (that is, they worked at different speeds), some workers spent a lot of time just waiting for the next workpiece to arrive.

Figure 5.19 shows a line balance analysis table that we can use to record the operation times for each worker. This table helps us understand how to rearrange labor at bottleneck-prone processes and achieve an overall balance in line operations.

However, such “analytical line balancing” does not always work well when put into practice. There are three main reasons why this can happen.

Reason 1: Rapid product diversification prompted the factory to switch product models while operation time analysis was still in progress.

Reason 2: At long last, we have finished the analysis. But by the time we are ready to put the results into practice, the corresponding product’s life cycle has ended and the factory has switched to a new product.

Reason 3: The workers are part-time workers (such as working mothers) and the turnover rate is high. Absenteeism is also rather unpredictable.
In the old days of high-volume lot production, product life cycles were longer, which made analytical line balancing a handy tool. In today’s fast-paced world, there is not always time for this slow, analytical approach.

There are two alternative methods to analytical line balancing. **Method 1:** “Practical line balancing.” Here, we do not carry out any kind of analysis but instead simply start the product assembly operations, then take an ad hoc approach to changing the configuration of assembly workers whenever the need arises. This approach has two common names: “practical line balancing” and “the SOS system.”

Specifically, we begin this approach by running the assembly line at a relatively slow pitch. Then we gradually accelerate the pitch until assembly workers who are not able to keep up
sound an “SOS” alarm. The workshop leader then responds immediately by making a balance-improving adjustment to the assembly worker configuration.

This goes on repeatedly until the workshop members finally arrive at the best pitch and configuration for that particular product. At this point, things go much easier if the line uses forced conveyor rather than a free flow conveyor.

Method 2: “Baton passing zone method.” Other names for this system are the “nonbalancing system” or the “cooperative system.” This system avoids line balancing altogether.

In conventional conveyor operations, each worker is assigned a predetermined and fixed workload. This rigidity in worker responsibilities helps give rise to imbalances.

By contrast, the baton passing zone method gives each worker at each process a set of basic tasks to perform, as well as a set of overlapping tasks that are shared with the previous and/or next process. When each worker is finished, he or she can “pass the baton” to the person at the next process.

To recapitulate, the traditional “defensive” or “reactive” type of assembly operations, in which workers sat to work and held rigidly defined job duties, no longer works as well in today’s manufacturing world. Instead, we need more “offensive” or “proactive” operations in which operators do more on their own to balance operations and ensure progress on the line. The latter type of operation is all the more necessary in view of today’s ongoing trends toward production diversification, shorter product lives, and more and more part-time workers.

Standing while working at processing lines—Standing while working is much more common at processing lines than at assembly lines, and today almost all factories have processing line workers standing to work.

If anyone wonders why processing workers must stand while working, the answer is simple: They need to stand for multi-process operations. Standing should not be required just because it suits the conveyance system or because the equipment is too large to operate while sitting. When processing
workers sit while working, they are like isolated little islands. We have to connect these little islands into an integrated line that follows the sequence of processes, and get workers to stand while working to enable one-piece flow and help build quality into products at each process.

Figure 5.20 shows how concrete blocks were used in one factory to raise the level of the work table to comfortably accommodate standing while working.

Preparatory Step 4: U-Shaped Manufacturing Cells

Flow production that includes two processes can be arranged in a straight line or an L-shaped line, as shown in Figure 5.21.
When the processing machines are small enough, they can be lined up side by side and the operator can move “crab-like” while operating both processes. If the machines are too large for this, they can be set at right angles to each other, and the operator can merely turn sideways to move the other machine. Either layout helps minimize the amount of “motion waste” created by the operator.

When there are three or more processes in one line, it is usually best to arrange them into a U-shaped layout. Although these sets of processes are called “lines” in Japanese, the name “cells” better conveys their function as a unit within the overall production line. We can minimize motion waste in these U-shaped cells by laying out the cell's input and output sites as close together as possible. Operators should always work on the inside of the cell, since this will enable them to get to each machine with fewer steps than if they were on the outside of the cell. It also makes it easier for teams of operators to help each other out whenever necessary. (See Figure 5.22.)

No matter what shape these cells take, the layout should work to minimize wasteful motions. Figure 5.23 shows how the layout does not have to be U-shaped, but instead can be

Figure 5.22 U-Shaped Cell.
other shapes, such as a parallel line arrangement—like an “equal” symbol (=) or an “S” shape.

Preparatory Step 5: Multi-Process Operations

Once we give up the “one worker per machine” system and arrange the processing equipment according to the processing sequence, all sorts of new possibilities arise for worker operations. Most significantly, it lets us switch from single-process operations to multi-process operations. At first, the workers will have to get used to doing things a completely new way. Naturally, this will result in lower daily output for a while.

There must be no half-hearted changes. We cannot claim to have implemented multi-process operations if we are still handling workpieces in “shish-kabob” lots or “caravan-style.” Multi-process operations is not multi-process operations unless it is done under one-piece flow conditions.

Figure 5.24 shows how multi-process operations were set-up for a sensor assembly line.

Before the improvement, this sensor assembly line had one sitting worker per process and used a conveyor to “push” finished lots toward the next group of processes. The manufacturing lead-time for products on this line was about
two days. The operators sat at work tables in cramped areas handling the lots that were passed to them at the upstream processes’ convenience. These workers sat amid piles of in-process inventory.

After the improvement, the layout is a U-shaped cell, in which all workers are standing while working and handling multi-process operations under one-piece flow conditions. This arrangement reduced the lead-time and completely eliminated the in-process inventory. The cell only takes about a third as much space as it used to, and they were able to lower the cell’s manpower requirement from five workers to three.

Preparatory Step 6: Synchronization

Synchronization means synchronizing both processes and workers so that the entire line and, eventually, the entire production system become synchronized. To do this, we must calculate the cycle time required for level production, after which we must match this up with the appropriate number
of workers and the correct operational procedures. We must first build up a smooth rhythm within sections of the production line, then we can build these up into an overall production rhythm.

However, this is often much easier said than done. There are many obstacles that can stand in the way of achieving an overall rhythm. The five main types of obstacles are described below.

Obstacle 1: Several upstream processes bottleneck into one downstream process, resulting in inventory pile-ups at the downstream process. *(Solution: in-line layout.)*

Most factories have many “exceptions” to whatever rules exist, and special processes or procedures are created to accommodate these exceptional cases. We must recognize, though, that making exceptions and accommodating them with special handling does not solve any problems. *There need not be any exceptions in the factory.*

In many factories, people regard processes such as forging, casting, painting, washing, and calcination as “special processes.” As a result, these processes get special treatment, and become self-involved little islands in the factory.

Figure 5.25 shows one such little island, a washing unit. Workpieces are conveyed from three cutting lines and piled up before this washing unit as in-process inventory. Before entering this washing unit, the workpieces are loaded by two workers into washing containers. Two other workers unload the containers and send the workpieces on their way downstream.

To solve this problem, we must remove the waste created by consolidating production flow at the large washing unit and then dispersing it again downstream. We can do this by incorporating small, inexpensive washers at the end of each processing line that formerly converged on the large washing unit. This in-line layout allows this factory to eliminate both the need for the four workers attached to the large washing unit and also the in-process inventory.

Obstacle 2: The “push” method, in which goods produced at one process are automatically sent to the next process, is
Before improvement

The washing process was set apart as a little island in the factory. Two workers were needed to load parts into washing containers and two others were needed to unload the containers and send the parts to the next processes. This arrangement still resulted in large piles of in-process inventory.

After improvement

Retire the large washing unit and install small one-piece washers at the end of each processing line. This removes the need for a large washing unit and also eliminates the in-process inventory around the washing process.

Figure 5.25 In-Line Layout of Washing Units.

resulting in pile-ups of goods at certain downstream processes. (Solution: the full work system.)

The “push” method makes it hard to achieve a smooth flow of goods because automatically sending goods to the next process does not consider whether or not the next process is ready for the goods. The “pull” method is therefore highly recommended as a means to ensure a smooth flow of goods. We call the “push” method “the push system” and the “pull” method “the pull system.”

There are various tools for implementing the pull system, such as *kanban*, hand delivering, and the full work system.
Here, we shall look at hand delivering and the full work system. (The full work system is explained in more detail in Chapter 14.)

Figure 5.26 shows how the number of hand deliveries were calculated between two operators. Before the improvement, in-process inventory filled up the entire space between the final assembly and parts assembly lines and no one could find any way to synchronize the two lines. They responded instead by making the work tables smaller and reorganizing the physical space to make more room. They also set-up a place where goods could be hand-delivered, which meant there was one hand delivery. The improvement reduced all of the in-process inventory to this one hand-delivery. Furthermore, if the hand delivery can be eliminated, this improvement will enable implementation of the pull system and will make any imbalance between the final assembly line and the parts assembly line readily obvious. This improvement led to the following improvement.

Figure 5.27 illustrates the synchronization of a “pull system” involving a printed circuit board (PCB) assembly line and a DIP
Before improvement

The PCB assembly line and DIP vat process did not operate at the same pitch, and this resulted in chronic accumulation of in-process inventory between them.

After improvement

The conveyor for the PCB assembly was moved closer to the DIP vat, and use of two limit switches (A and B) enabled achievement of a pull production using a full work system. This eliminated the in-process inventory between the PCB assembly line and the DIP vat and enabled a reduction of one worker at the DIP vat process.

Figure 5.27 Pull Production Using a Full Work System.

vat. Before this improvement was made, the DIP vat process tended to lag behind, and there was a chronic accumulation of in-process inventory between the PCB assembly line and the DIP vat. The improvement included moving the two processes closer together and installing two limit switches (A and B) to enable implementation of a full work system. This improvement eliminated in-process inventory between the PCB assembly line and the DIP vat and led to manpower reduction on both the PCB assembly line and the DIP vat process.

Obstacle 3: Variation in work procedures among different workers causes delays or idle time. (Solution: cooperative operations.)

Whether it be a processing line or an assembly line, balanced operations among workers within the line is a key prerequisite for maintaining a smooth flow of goods. Such
balancing of operations takes a lot of training and practice, but these days more and more factory workers (in Japan) are part-time workers, which makes it harder to achieve and maintain such a balance. As a result, maintaining a constant tact time for operations such as fine-tuning electronic products is difficult indeed; delays or idle time often occur, upsetting the balanced flow of goods.

The solution that will keep balanced operations and smooth flow of goods from being upset is to have workers consider their operations flexible rather than rigid. In other words, they should be trained to help other workers when the flow starts becoming unbalanced. This approach is known as “cooperative operations” or the “baton passing method.”

Figure 5.29 illustrates the steps to take in carrying out cooperative operations on an assembly line.

- **Step 1: Standing while working.**
 This step starts with having all of the workers on the assembly line stand up. They should perform their operation whenever a workpiece arrives in front of them. This means abandoning their old “reactive” way of working
Before improvement
Assembly line

Parts put beside operator
Sitting operator
Parts put behind operator

After improvement

- **Step 1:** Standing while working Proactive operations

- **Step 2:** Place parts in front of workers. Smaller amounts of parts

- **Step 3:** Reduce the gap between operators. Operators should be able to see previous and next operations with peripheral vision.

- **Step 4:** Establish cooperative operation zones.

- **Step 5:** Start vocal pull production.

Figure 5.29 Improvement Steps for Cooperative Operation.
and adopting a “proactive” method that emphasizes the value each worker adds to the product.

Step 2: Place parts in front of workers.

When the workers were sitting, they made little use of the area directly in front of them. Standing while working enables workers to eliminate the stacking of parts on their left and right and instead have all parts in front of them. To do this, we have to decrease the amount of parts placed before each worker and increase the frequency of supplying parts to the workers.

Step 3: Reduce the gap between operators.

By placing all of the parts the operators will be using in front, we are able to get rid of the parts that had been piled up on the left, right, and in back of the operators. This newly created open space makes it obvious that the operators are too far apart from each other. In reducing the gap between operators, we should figure that the operators should be close enough to reach each other’s outstretched hands (about 80 centimeters to 1 meter). In assembly operations for home electronics products and electrical equipment, the operators should be even closer; about 60 centimeters apart. Once we have reduced the gap between operators, each operator is able to keep an eye (using peripheral vision) on what is going on at the previous and next processes. This creates an environment that is more conducive to cooperative operations.

Step 4: Establish cooperative operation zones.

Now that we have established a layout that supports cooperative operations, we need to establish cooperative operation zones. To calculate these zones, we need to list each of the assembly operations and assign a number to each. Then we can set-up cooperative operation zones that can cover some of the operations at the previous and next processes. Each cooperative operation zone should be expressed as starting from one operation number and ending at another operation number, as in the cooperative
operation checklist shown in Figure 5.30. The zones of cooperative operations among operators at adjacent processes is reminiscent of the zones on the running track within which relay runners must pass their batons. That is why cooperative operations are sometimes called the “baton passing method.” In track relays and in cooperative zones on the assembly line, the “baton pass” can be made anywhere within the baton passing zone.

Step 5: Start vocal pull production.

In this case, “vocal pull production” means that the worker—who is “passing the baton” by turning the rest of the process’s operations in a cooperative operation zone over to the next worker—should vocally confirm which operation number he or she has finished. This helps prevent any misunderstanding between workers that might result in the repetition or omission of an operation.

Obstacle 4: When we have shish-kabob production on the assembly line, it is not possible to synchronize the assembly line with the process line, which also means that the flow of goods cannot be synchronized. *(Solution: establish specialized lines.)*
Many factories have assembly lines that are used to put together a variety of product models. When asked why they do it this way, the managers of such lines always have some excuse, such as: “We don’t have any other equipment,” or “There’s no room to do it otherwise,” or “These are our most efficient workers.”

When several different product models are assembled on the same line, the many equipment changeover operations are bound to be a haphazard affair, and the line will likely adopt shish-kabob production to minimize the number of required changeovers. This reinforces all the old conventional notions about manufacturing and creates a vicious cycle.

Figure 5.31 shows how a mixed-product assembly line can be changed into three specialized assembly lines. Before this improvement, one assembly line operated by ten workers would handle three product models per day. This resulted in a lot of waste created by changeovers and by unbalanced operations following each changeover. Also, because the line was using the shish-kabob production method, it was quite difficult to synchronize the assembly line with the processing

To assemble three different product models on one line, they opted for shish-kabob production, which meant they were not able to synchronize processes and product flow.

Establishing specialized assembly lines eliminated product model changeovers and facilitated level production. As a result, they were able to eliminate surplus inventory and synchronize both processes and product flow.

Figure 5.31 Improvement to Establish Specialized Assembly Lines.
line and to synchronize the flow of goods. This led to large amounts of inventory.

After the improvement, the workers were divided into the numbers needed for the required output of each of the three product models (A, B, and C) to enable level production. This also completely eliminated the need for changeovers, prevented disruption of balanced operations, and made for easier and smoother synchronization of the assembly and processing lines, and of the product flow. Finally, it enabled the elimination of surplus inventory.

Obstacle 5: Attempts to reduce the number of changeovers in the processing line results in large lots, which disrupts the smooth flow of goods. (*Solution: improve the changeover procedures.*)

When changeovers for different product models occur in the assembly line, they usually also take place in the processing line. To avoid the hassle of frequent changeovers, the lines naturally tend toward handling large lots, which disrupts the flow of goods and makes it hard to synchronize upstream and downstream processes.

We might think that the same advantages can be realized by also setting up specialized processing lines for different product models. However, unlike assembly lines, processing lines require various expensive types of machines. It is therefore necessary to make each processing machine handle several different product models. In such cases, the appropriate improvement is to improve the changeover procedures. Changeover improvements are described in Chapter 11.

Case Study: Flow Production within the Factory—Improvement at a Diecast Factory for Automotive Electrical Parts

The factory in this case study, a subcontractor to an automobile manufacturer, makes diecasts for automotive electrical parts. Before making improvements, this factory operated
entirely on the shish-kabob production system, using lots of 500 to 700 units loaded into containers and conveyed between processes by forklift. The factory was operating slightly in the red, but the company somehow managed to balance its accounts at the end of each term. The factory managers decided to adopt JIT improvement as a way to revolutionize their tired old factory management system.

Before Improvement

Figure 5.32 shows this factory’s processing sequence and production flow prior to improvement.

![Processing Sequence and Production Flow for Diecast Product A (before Improvement).](image-url)
The major characteristics of this factory are:

- **Layout**: Job shop layout; similar tasks are grouped within the same workshops.
- **Production flow**: Shish-kabob production using lots of 500 to 700 units.
- **Operators**: Single-skilled workers, each assigned to a specific process.
- **Machines**: Large machines capable of handling large lots.

Under this arrangement, it takes 12 workers to operate the line for product model A, and it takes three days for each workpiece to go all the way from the forging process to shipment. The factory contains three days of in-process inventory and the lots are conveyed between processes via forklifts requiring full-time forklift drivers.

The biggest obstacle to improvement was the large shotblaster, shown in Figure 5.33. Every workpiece that this factory handled had to be shotblasted by this big machine, and naturally this led to large piles of in-process inventory on the upstream and downstream sides of the shotblaster. In addition, the fact that workpieces were shotblasted in large batches meant that the workpieces got jostled around in the shotblaster. Inspectors were needed to sort the damaged diecasts from the undamaged ones.

![Large Shotblaster](image)
After Improvement

We got right to work by selecting a model line for manufacturing product A. We abandoned the job shop layout and switched over to a flow shop (line) layout that emphasizes the flow of goods. At this point, we also abandoned all of the manual deburring processes and switched over to machine operations using a press, multi-spindle drilling machine, and other equipment. This enabled us to eliminate all manual processing.

Figure 5.34 shows the processing sequence and production flow following the improvement.

The major characteristics of this factory are:

- **Layout**: Flow shop layout (in-line); emphasizes the flow of goods.
- **Production flow**: Workpieces exit the forging process in 500-unit lots and move in one-piece flow from the pressing process to shipment.
Operators: Multi-skilled workers, trained to handle seven processes, from pressing to shipping.

Machines: Eliminated large shotblaster and built a small shotblaster conducive to in-line arrangement. (See Figure 5.35.)

As a result of this first improvement, the model line was able to manufacture product model A using only two workers instead of 12. To reduce the former lead-time of three days, this improvement brought about a cycle time of 10 seconds for one-piece flow. Naturally, the inventory was also drastically reduced, reaching zero except for seven workpieces of inventory at the pressing processes and three at the drilling machines.

In addition, this improvement meant that forklift conveyance was no longer needed within the line. Furthermore, the elimination of the large shotblaster did away with the chronic problem of shotblast-damaged diecasts.

After their initial success with this model line, the factory managers extended the improvement laterally to other lines.
Within two years, the company’s business accounts were in the black.

Flow Production between Factories

Applying the Flow Concept to Delivery

When we take a successful model of flow production, such as the model line described above, and extend that clearly visible example to other lines in the same factory, we call it “lateral development.”

Once we have carried out lateral development and have established a firm footing for flow production within the factory, we are ready to take on the challenge of extending these improvements outside of the factory. In so doing, JIT production begins to take on greater height and depth as well as breadth.

Obviously, this vertical development of JIT improvements is centered on the factory where the improvements began and is generally extended in two directions: the “delivery” direction, which means from the factory to its vendors and subcontracted suppliers, and the “shipment” direction, which means from the factory to its customers or wholesalers. Once we understand these two directions, we must also understand that the most important direction is that between the vendor and/or subcontractors and the factory.

JIT’s basic approach is to reduce the amount of each delivery and to compensate by increasing the frequency of deliveries. Obviously, if the deliveries are more frequent, they will also be more costly if current methods are used.

Let us suppose that deliveries are increased from once a day to twice a day and the per-delivery amount is correspondingly cut in half. This means the deliverer’s cost will be approximately double.

When people hear this, many are quick to conclude that the JIT production system bullies the subcontractors. But this
is not so. The general trend toward diversification and shorter delivery deadlines has affected the distribution industry, the manufacturing industry, and the transport industry. Right now, the transport industry is confronting this challenge. Meanwhile, manufacturers are struggling to meet market needs for product diversification and short delivery scheduling.

Several clever new delivery methods have been developed. These methods concern three main aspects of delivery operations: loading methods, frequency of delivery, and transport routes.

Loading Methods

The product diversification trend has radically changed loading methods. Cargo loads used to be mainly all the same type of products. Today we not only have mixed-product loads, but also mixed-product loads that are loaded in the sequence of their use on the client’s production line. (See Figure 5.36.)

- **Single-product load**

- **Mixed load**

- **Sequential mixed load**

Figure 5.36 Loading Methods.
Product diversification can easily lead to greater inventory. To keep inventory levels down and lead-times short, we must have more frequent deliveries. Sometimes we must switch from just one delivery per day to eight per day, from eight to 16, or even from 16 to 32. (See Figure 5.37.)

Figure 5.37 Frequency of Deliveries.

Frequency of Deliveries

Product diversification can easily lead to greater inventory. To keep inventory levels down and lead-times short, we must have more frequent deliveries. Sometimes we must switch from just one delivery per day to eight per day, from eight to 16, or even from 16 to 32. (See Figure 5.37.)

Transport Routes

One way to hold down the higher costs caused by product diversification is to improve transport route planning. Instead of simple point-to-point deliveries, it may be more economical to make circuit or compound deliveries. (See Figure 5.38.)

Thus, there are three main areas of improvement the transport industry must concern itself with: improved loading methods in response to product diversification, more frequent deliveries in response to lower inventory levels and shorter lead-times, and improved transport route planning in response to the need for cost reduction.
It follows that the best combination of improvements is when the transport company manages to implement sequential loading, 32 deliveries per day, and compound deliveries.

The transport industry is witnessing a major shift away from large-scale container deliveries and toward smaller packages delivered door-to-door. In big cities, we can even find small package deliveries being made via motorcycle. Whenever there are new needs, the transport industry is obliged to respond with new methods.
Figure 5.39 shows a delivery company evaluation table. Factory managers can use this table to evaluate how well each delivery company responds to their needs and to help improve their own factory’s policy on deliveries.

Applying the Flow Concept to Delivery Sites

In JIT production, the secret for success in deliveries is not the conventional wisdom of delivering larger loads in fewer trips. It is just the opposite: smaller loads and more trips.

For instance, assuming there are 20 workdays in a month, consider the following two monthly delivery schedules:

A. Deliver once a month, 100 units per delivery (= 100 units total).
B. Deliver 20 times a month (daily), 5 units per delivery (= 100 units total).

In JIT production, we choose the latter. Even though the delivered units add up to the same total, the delivery methods are as different as night and day. Method B calls for 20 times more deliveries than Method A.

Next, we need to consider another very important issue: Which part of the factory should take in the delivered items?
Exactly where and how these deliveries are made can have a big impact on the handling of materials and parts in the factory.

The following are five points to remember for setting up delivery sites that will help prevent goods from accumulating and will make for a smooth flow of goods with little or no waste.

Point 1: Self-Management by Delivery Companies

In principle, the delivery company should be responsible for managing the delivery site it uses. In other words, the delivery company should bring the cargo all the way to the delivery site, keep the site properly arranged and orderly, and manage its general condition.

I strongly suggest that signboards be used to clearly indicate who brings what to where and exactly when. (See Figure 5.40.)

Figure 5.40 Establishment of Delivery Sites and Signboards for Delivery Site Management.
Point 2: Color Coding for Orderliness

Color coding is a good way to clearly show the relationship between things and processes—that is, what things are used in which processes. One good way to color code this relationship is to select a different color for each line and use that same color for the parts and materials that will be used in that line.

Color coding in this way will help prevent parts mix-ups when parts are supplied to the various lines at the factory. At the same time, it will also help parts and materials flow more smoothly to the lines with less waste, thereby contributing to an overall smooth flow of goods. (See Figure 5.41.) (Color coding is described in more detail in Chapter 4.)

Point 3: Product-Specific Delivery Sites

There are basically two ways to sort parts: according to similar types of parts that serve similar functions, or according to the products in which the parts will be used. These are respectively called “function-specific” and “product-specific” sorting methods. The product-specific method helps minimize waste and makes for a smooth flow of goods when the parts are to be used in products manufactured frequently.

Point 4: FIFO (First In First Out)

Whenever goods are put somewhere, there is always a process of placing and retrieving. If the most recently placed
product is the one to be retrieved, we call it a LIFO (Last In First Out) arrangement. The problem with this arrangement is that the oldest item (the one placed there first) is also the last one to be retrieved. Delays in retrieving stored products can make these older items grow very old indeed.

Obviously, this is not a desirable situation. Therefore, we should be sure to have the opposite arrangement—FIFO (First In First Out)—whenever possible, to keep items moving as if they were on a conveyor belt and to help prevent inadvertent long-term storage.

Point 5: Visible Organization of Containers

Another important means of making the flow of delivered items smoother is to make the containers used for such items as clearly distinguishable as possible. We call this “visible organization of containers,” which is part of the general idea of “visual control.”

Figure 5.42 shows two examples of visibly organized containers, a parts tray and a parts box. These containers make it much easier for workers who select parts from them to understand which parts are which. They also make obvious which part has been overlooked, since the container should be empty when parts selection is finished. This also helps improve defect detection.

![Visible Organization of Containers](image)

Figure 5.42 Visible Organization of Containers.
Multi-Process Operations

Multi-Process Operations: A Wellspring for Humanity on the Job

Eliminating defects, raising the operating rate of workers and machines, and improving productivity are all matters of great importance in any factory. It is no exaggeration to say that higher productivity is the key to survival for companies today.

However, even “survival” is not reason enough to treat workers like machines. When you come right down to it, it is people—not machines—that make products. Productivity is important indeed, but not as important as respecting the humanity of our workers. Productivity and humanity must coexist in the factory. Sometimes, the two have conflicting purposes. If we raise productivity at the expense of humanity, we are doing ourselves a disservice in the long run.

For example, let us suppose that the workers in our factory each have very specific and specialized job tasks. One person hammers in bolts all day while another glues on labels. They have been doing this for five or ten years. How much pleasure do you suppose these workers derive from their work, and what sense of achievement or satisfaction have they gained after all those years?
Now let us consider the opposite situation: a factory where humanity is respected even to the point where productivity is no longer important. When taken to such an extreme, humanity takes on shades of arrogance and, eventually, selfishness. Factories that take this path lose their vitality and ultimately fail.

Obviously, we need to find a way to satisfy both productivity and humanity (See Figure 6.1.)

The Difference between Horizontal Multi-Unit Operations and Vertical Multi-Process Operations

Building up one-piece flow production is the best way to get rid of defects, waste, and production delays. The basic concept in one-piece flow production is to send workpieces along the processing sequence one at a time, adding processing (value) to the workpieces at each process. As such, flow production is a very basic ingredient in JIT production. (For further description of flow production, see Chapter 5.)
The following are the main things we must have in order to establish flow production.

- **Equipment.** We need specialized machines that include only the essential required functions, are inexpensive, and are small enough to fit right in to the production line.

- **Equipment layout.** Equipment must be arranged according to the processing sequence. Workshops should be of the “flow shop” type (as opposed to the “job shop” type) and should preferably consist of U-shaped manufacturing cells.

- **Operational procedures.** We must give up “shish-kabob” production and learn one-piece flow in which workpieces are fed to and from processes one at a time. All workers must stand while working and learn to handle several processes in order to synchronize their work with the cycle time.

- **People.** We must train workers in the multiple skills they will need to handle several processes.

Multi-process operations are the key that opens the door to one-piece flow production. Without multi-process operations, there can be no JIT production system.

We are not likely to find much worker enthusiasm for multi-process operations if we introduce such operations in conventional “job shop” type workshops (workshops laid out according to function). Multi-process operations can be achieved in such workshops, but the amount of conveyance the workers would have to do themselves by walking and carrying workpieces makes it hard to find time for processing the workpieces. Therefore, we first need to change the equipment layout to the “flow shop” arrangement (equipment arranged according to the product). This changes the workshop from being a multi-unit process station to being a multi-process production line.
Obviously, we cannot change a multi-unit process station to a multi-process production line unless we change the equipment. A group of presses are only good for pressing and a group of drilling machines are only good for drilling. There is no way we can arrange multiple press units or drilling machine units into a multi-process production line. That is why we need to make the distinction between the grouping of machines that all serve a certain processing function (multi-unit process stations) and the grouping of machines that provide a sequence of processing functions needed to build a certain product (multi-process production line).

Figure 6.2 illustrates this distinction.

The concept behind multi-unit operations (that is, operations at multi-unit process stations) is to have one worker handle several processing machines that perform the same type of process. By contrast, the concept behind multi-process operations is to have one worker handle several processes (arranged according to the processing sequence).

No matter how many machines multi-unit operators handle, they only need one skill to operate them since the machines are all similar (presses, drilling machines, or whatever). Since multi-unit operations all take place at the same processing stage in the overall production line, we refer to multi-unit operations as “horizontal operations.”

Conversely, operators who handle multi-process operations must have skills in several types of processes, such as presses, drilling machines, bending machines, and so on. We therefore refer to such workers as “multi-skilled workers.” Since multi-process operations occur along a sequence of processes that include several stages along the overall production line, we refer to multi-process operations as “vertical operations.”

Once we have established flow production that uses multi-process operations, we can be sure to expect higher quality. Almost all surface defects on products—such as dents, cracks, or missing parts—will disappear. One-piece flow will ensure that when the occasional defect does occur, the line
Multi-Process Operations

can be stopped before an entire lot of defective products is turned out.

Best of all is the fact that this improvement enables us to track down the causes of defects and take appropriate countermeasures. In conventional shish-kabob production, anywhere from 500 to 1,000 defective units are produced.
before anyone notices the defect. Since the people who discover the defects are usually several stages down the line from the operators at the defect-causing process, it is very difficult to trace where that process is, and therefore it is very likely the defect will occur again.

By contrast, flow production using multi-process operations usually includes self-inspection by the multi-process operators. These operators not only turn out products, they objectively inspect them for defects. The inspection results reflect directly on their work and remind the operators that quality is built into products at each process.

In conventional shish-kabob factories, the general attitude among line workers is: “I just make them. It’s up to the inspectors to inspect them.” When we stop to think of the way the quality “buck” gets passed to the inspectors, we can recognize just how flawed the conventional approach is. The inspectors do what they can to sort out defects, but they do little or nothing to stop them from recurring.

We have been comparing shish-kabob production and flow production using multi-process operations only in terms of their quality aspects. But there are other important aspects, such as costs and punctual delivery. The cost impact of these two very different approaches includes the cost of in-process inventory waste, space-related waste, conveyance waste, and waste caused by putting things down and picking them up again. Flow production using multi-process operations can completely eliminate all of these kinds of waste.

One way to eliminate these kinds of waste is the practice of manpower reduction. (Chapter 7 describes manpower reduction in detail). Manpower reduction means using the minimum number of workers needed to produce the amount of products ordered by the client. When work is divided into single-skill tasks, more workers are needed to operate a production line and it is more difficult to reduce the number of workers when client orders shrink. Multi-process operations
enable us to easily determine the minimum number of workers needed for any particular amount of output.

As for the delivery aspect, the lead-time for multi-process operations is remarkably shorter than for conventional shish-kabob operations. The former method not only prevents delivery delays, but reduces lead-time to where it is much better able to adapt to schedule revisions than the latter conventional method.

Questions and Key Points about Multi-Process Operations

Questions from Western Workers

Whenever I begin explaining JIT production to Europeans, Americans, and other Westerners, they usually look at me with a baffled expression, since their way of making things is so different from the way I am describing. After I describe multi-process operations to them, they pose questions that invariably include the following.

Question 1: Don’t Multi-Process Operations Present Problems with the Labor Unions?

Yes. As a matter of fact, we can expect to have problems with the labor unions whenever we attempt to introduce multi-process operations in Western countries. In Japan, labor unions are “enterprise unions” in that each company has its own union. This means that companies can changeover to multi-process operations without having to change the union organization.

In the West, most unions are “craft unions.” There are press workers’ unions and lathe workers’ unions and so on. The press workers’ unions include people who specialize in operating presses, and this specialization makes it difficult, if not impossible, to introduce multi-process operations.
When Japanese automakers build plants in the West, they generally try to hire all nonunion labor in order to facilitate the introduction of multi-process operations. (See Figure 6.3.)

Question 2: Do Workers Get a Raise in Pay after They Have Learned to Handle Multi-Process Operation?

There is a strong belief among Western workers that a worker’s pay should correspond to the level of his or her skills. It would follow that someone who takes the trouble of learning the multiple skills needed for handling multi-process operations should expect a pay raise. In Japan, raises are generally tied to seniority in the company and not so much to specific skills. Very few Japanese workers or managers think that learning to handle multi-process operations should directly affect pay scales.

Question 3: If All Company Workers Need to Learn to Handle Multi-Process Operations, Wouldn’t That Incur a Tremendous Amount of Training Costs for the Company?

In the West, it takes about three months of basic training to teach an unskilled worker how to operate factory equipment. Training the entire factory workforce to handle multi-process operations would indeed mean colossal training costs. But there are other, less expensive ways to train workers. In Japan, companies provide very little in the way of basic training.
courses for equipment operators. Instead, starting workers are given unskilled jobs and are required to spend about one hour of overtime each day just watching the skilled workers do their work. Another way Japanese companies keep training costs down is by thoroughly standardizing equipment so that few machines require a lot of specialized knowledge for their operation.

When seen from the perspective of the Westerners who typically ask the previous questions, it becomes obvious that JIT production is a very Japanese type of production. In particular, multi-process operations makes superb use of the flexibility in job assignments that characterizes Japanese companies.

Eight Key Points about Multi-Process Operations

Let us take a closer look at multi-process operations and the answers given to those three questions by examining the following eight key points about multi-process operations.

Point 1: Establish U-Shaped Manufacturing Cells

The first thing to do in preparing for multi-process operations is to abandon the “job shop” type of layout, which is appropriate only for shish-kabob production, and set-up a “flow shop” arrangement where the equipment is laid out according to the processing sequence. In other words, the various machines are lined up in a closely linked processing cell.

In this kind of cell, U-shaped lines are better than straight lines. Straight lines create waste by making operators walk farther when going back to get another workpiece at the end of each set of processes.

Figure 6.4 shows an automotive electronic parts assembly line. Before improvement, this line included about four or five cases of 24 parts each as in-process inventory between each set of processes. After improvement, they built a U-shaped
manufacturing cell using a smaller hardening unit that could fit into the cell. This new layout eliminated cart conveyance and enabled a smooth one-piece flow of workpieces. The operators learned how to handle all 11 processes in the cell and, as a result, a smaller number of workers could produce the same output.

Point 2: Abolish Processing Islands

Manufacturing should have a steady rhythm to it, but who should determine the rhythm? The customers, of course. The rhythm that customer orders dictate is dictated first to the assembly stage, then to the processing stage, and finally
to the basic materials processing stage. However, at many factories, some processes exist independently as isolated little islands that run at their own rhythm. These little islands are full of waste—waste caused by their independent rhythms, by the resulting idle time for workers, and by their less obvious operating methods.

It is imperative to eliminate such processing islands and bring them directly into the line or cell. Figure 6.5 shows how...
a watch factory’s winding stem process was brought into an integrated line. Before this improvement, the stem gear process was an isolated “island” that was operated at its own pitch by four workers, each of whom had to carry armfuls of inventory. They had to keep this little island well-stocked with workpieces in order to keep pace with the assembly lines.

After the improvement, they were able to balance this line with the assembly lines by including a stem process in each assembly line. As a result, they freed up 40.59 square meters of floor space, cut lead-time by half a day, eliminated the 4,000-unit stem inventory, and reduced the number of workers by four. (See Figure 6.5.)

Point 3: Make the Equipment Smaller

Usually, when a factory brings in new machinery, the major concern centers on how efficiently that machinery can be used. Even more important than the efficient use of any individual machines is the overall efficiency of the entire production system. (The concept of overall efficiency is discussed further in Chapter 2.) The equipment only needs to work fast enough to keep up with the cycle time. Therefore, we do not need fast, large, and expensive general-purpose equipment when the job can be done perfectly well using slower, smaller, and cheaper machines that perform only specialized tasks. Getting the right kind of equipment is the first step in bringing all equipment into a single line.

Figure 6.6 shows how a smaller shotblaster for automotive parts was developed. Before this improvement, this factory was using a shotblaster that was as tall as three people and was installed in its own room. Naturally, this machine lent itself to processing large lots, and the piles of in-process inventory in front of the shotblaster room took up twice as much space as the room itself. The shotblaster handled minimum lots of 500 units, and the units often banged into each other while being shotblasted, producing a defective rate of
Multi-Process Operations

nearly 10 percent. Inspectors were kept busy sorting out the defective parts after each lot was shotblasted.

The factory worked with the shotblaster manufacturer to develop a smaller machine that measured one meter wide, one meter deep, and two meters high. They called it the “one-piece shotblaster” Not only was this new shotblaster small enough to bring directly into the processing line, but it eliminated shotblast damage-related defects and removed the need for a shotblasting room, cranes, conveyors, space for in-process inventory, inspector manpower, and other forms of waste. (See Figure 6.6.)

Point 4: Standing While Working

At most home electronics or electronic component assembly plants, we can find rows of female workers seated alongside conveyors, busily assembling products.
Standing while working is a basic requirement for multi-process operations. Workers need to learn how to work on their feet. Once they are standing, they can more easily help their neighboring workers and thus eliminate idle time. Simply standing can do wonders.

Think about how the typical housewife fixes dinner. Can you imagine her seated at the kitchen counter or the stove, calling, “Dinner’s almost ready,” to her family as she busily prepares the food?

Point 5: Multiple Skills Training

Multiple skills training is an obvious necessity if we are going to have workers capable of handling multi-process operations. Multi-process operations occurs when a worker takes individual workpieces through the processing sequence, operating a variety of processing equipment. This differs from being an expert on any particular machine, such as thoroughly understanding the machine’s design, retooling, operation, and maintenance.

The key to success in multi-process operations is simplifying the machines so that they perform only the essential processing function and do not require frequent fine-tuning. After that, we need to make certain that the workers learn how to systematically and confidently use the skills needed to operate those machines.

Figure 6.7 shows an example of multi-process operations at an auto parts machining line. This line is centered on numerically controlled machine tools and includes seven processes altogether. The operator is a 19-year-old woman. The key training points for multiple skills in this case included standardizing the machines, work procedures, and various other forms.

Point 6: Separate Human Work from Machine Work

This means making a clear distinction between work done by people and work done by machines, then separating the
people from the machines whenever possible. (Separating human work from machine work is described further in Chapter 14.)

Usually, equipment operators stay close to their machines while the machines do their work. The fact is, however, that the worker and the machine each have separate tasks to do. Obviously, labor costs and equipment costs are both costs the company must pay.

If we can clearly distinguish between human work and machine work, the worker can leave the machine alone
to do its work while he or she goes on to the next human task. To make this possible, we must often develop devices and techniques that fall under the categories of “human automation” and “poka-yoke.”

Figure 6.8 shows how human work was separated from machine work at a drilling machine. Before the improvement, the worker would press the ON switch and stand there holding the workpiece on the drilling machine with both hands. This meant that the worker was not free to do other work until the workpiece had been drilled.

After the improvement, pneumatic cylinders were installed on the right and left sides of the drill. When the worker presses the ON switch, these cylinders hold the workpiece in the correct position, enabling the worker to be completely separate from the machine.

Point 7: Human Automation and Poka-Yoke

Once the operator is able to let the machine do its own work, he or she is free to turn to the next human task. But what if
the machine starts producing defects without anyone there to notice? Does that mean we have to keep the operator there just to watch out for abnormalities? If we do that, we have not really separated the human work from the machine work.

Instead, we must come up with ways to prevent defects by having the machines automatically detect them and then stop operating. This is where human automation and *poka-yoke* come in. (Human automation and *poka-yoke* are described further in Chapter 14.)

Figure 6.9 shows a *poka-yoke* device that prevents set-up errors in a press. Before the improvement, the operator had to set-up the workpiece and then confirm correct set-up. Sometimes, however, the operator still made set-up errors, which resulted in defective products.

After the improvement, the machine was equipped with a limit switch that prevented the machine from operating unless the workpiece was set exactly right. This enables the operator to leave the machine without having to worry about the possibility of producing defective goods.

Point 8: Safety First

Once we have begun multi-process operations, we need to pay more attention than ever to safety matters. Everyone should remain mindful that “safety takes precedence over everything else.”
One safety point is to keep start buttons separate from the machine themselves so operators will be at a safe distance at the instant the machines start working. Other useful safety devices include machine covers and electric eyes that shut off the machines when anything or anyone approaches them. Even when there are several operators working in the same U-shaped manufacturing cell, everyone must be very careful to maintain safety.

Precautions and Procedures for Developing Multi-Process Operations

Seven Precautions for Developing Multi-Process Operations

Single-skill workers are incapable of handling several types of processing machines and/or procedures. Therefore, we cannot have multi-process operations until we have taught the operators the wide range of skills they will need for the job. When training these operators, please note the following seven precautions.

1. *Make work procedures as simple as possible*
 There will inevitably be some cases where operators will need to learn certain procedures that take a long time to master or involve special skills. This is especially true of retooling and fine-tuning procedures.

 We can minimize these difficulties by simplifying work procedures so that anyone can easily understand how to perform them. In addition to simplification, thorough standardization can go a long way toward making multiple skills for multi-process operations easier to learn.

2. *Factory leaders should provide proper guidance*
 Effective leadership from factory managers and foremen is essential for ensuring swift progress in multiple-skill training.
After all, the operators are not the ones who best understand how the factory’s various processes fit together and what procedures are involved in each process. Managers, foremen, and other supervisors have this knowledge and should put that knowledge to use in helping operators learn multiple skills for multi-process operations.

3. **Transparent operations**

When teaching work operations to a novice, we must explain the various operations and steps as clearly and fully as possible. This is what I mean by “transparent operations.” (Chapter 13 explains the difference between transparent operations and standard operations.) To make our explanations transparent, we must uncover and elucidate all the little details that are usually considered “givens” and left unexplained. These “transparent operations” will ensure that even a completely unskilled worker will have all the information he or she needs to perform the job correctly.

Nothing should be left up to the factory’s “oral tradition” of know-how that gets passed from person to person. Everything must be explicit and by the book. Job guidelines and operations manuals must contain clear descriptions of thoroughly standardized operations.

4. **Implement multi-process operations throughout the factory**

Multiple skills will soon deteriorate if they are only taught for certain processes or workshops. Company presidents and/or factory supervisors should put their full authority into promoting factory-wide multiple skills training. They should use whatever vehicles of communication are available to them (such as in-house newsletters and speeches) to issue progress reports on multiple skills training. They should also periodically hold “multiple skills contests” to present awards of recognition to the best trainees.
5. **Promote perseverance and set successive goals**

Multiple skills training needs perseverance like a car needs gasoline. Trainees have to be constantly encouraged to “hang in there” no matter what problems they encounter. There is no rush—the key is to take all the time you need to accomplish the training.

It is also very important to be systematic by clearly scheduling the various steps in multiple skills training. Draw up reference charts, such as a “Multiple Skills Training Schedule” or a “Multiple Skills Score Sheet,” so that you can have an at-a-glance display of each trainee’s progress.

6. **Make prompt equipment modifications**

Sometimes we need to modify equipment to make it easier for anyone to use or to enable the separation of human work from machine work.

Sometimes workshop employees get let down when production engineers or the equipment maintenance staff refuse to make the desired equipment improvements. It would be nice to have a team of equipment experts who specialize in JIT-related equipment improvements and are ready to work at a moment’s notice. If the desired equipment improvement is simple enough, equipment operators or factory floor supervisors may be able to make the improvement themselves.

7. **Absolute safety**

Since multiple skills training requires novices to learn to operate various kinds of processing equipment, we must make sure the training is not hazardous. If even one accident or injury occurs during the training, it will likely have an adverse impact on morale and willingness to learn. We must therefore do everything we can to avoid all possible hazards.

Basically, two things can ensure absolute safety: careful safety checks during the design and operation of the equipment, and safety-minded discipline.
Five-Step Procedure for Training Multi-Process Workers

A few examples of multiple skills training can be found at just about any Japanese factory. Some factories proudly display banners or signs that announce their commitment to multiple-skills training.

However, almost all of these factories that promote multiple-skills training do not train workers to use these skills in a flow production system. Instead, they are mainly interested in having “pinch hitters” who can readily substitute for absent workers. These factories continue to operate shish-kabob production systems, and the multiple-skill workers are trained to move batches of workpieces from one process to the next in what I call “caravan style” operations.

They do not understand the true meaning of multiple-skill training and multi-process operations. Flow production forms the very foundation for JIT production. Factories must focus on the need to cultivate true multiple skills, which means the ones that are required for flow production using multi-process operations.

Multiple-skills training is a lot like small-group activities because it vitally depends on the involvement of the entire factory and on the encouragement provided by factory leaders. Many workers need to be prodded along—they are not fond of new adventures. They are snuggled safely into a cozy nest made up of work habits and the single set of skills they have practiced for years and years. They know their job perfectly and need not fear any unpleasant surprises. In fact, they can be confident and proud knowing that no one can perform their particular job as well as they can.

Multiple-skills training asks these seasoned “veterans” to throw away their single-skill achievements and start all over as amateurs. No wonder they resist so much.

We must use strong medicine to rid factories of this addiction to traditional work methods. We must go over the heads
of section and division chiefs and include the company president and other top managers in the effort to encourage workers to accept the challenge of learning multiple skills.

I recommend following the steps described below when promoting multiple-skills training.

Step 1: Create multiple-skills training teams

It is usually best to follow the familiar format of small group activities by creating multiple-skills training teams. If the factory has already established a small-group activities program, it can simply set-up “multiple-skills training” as a new major theme within the program. The important thing is to help put trainees at ease and to set the stage for the challenge of developing multi-process operations.

Step 2: Clarify what the trainees’ current skills are for each process

Before beginning the multiple-skills training, find out what skills and strengths the operator trainees already have and explicitly describe them. This can generally be done by entering the trainees’ names on a chart and marking “skilled” or “unskilled” next to each process to indicate whether or not each trainee has the skills required for each process. You may need to make separate current ability marks when special skills are required in the process.

If possible, it would be even better to evaluate current skills using multiple levels instead of just the two levels of skilled and unskilled. A five-level skills evaluation might be organized as:

a. Level 1: Unable to do the operation.
b. Level 2: Able to do the operation if someone else does the set-up.
c. Level 3: Can generally do the operation, but needs minor guidance.
d. Level 4: Can do the operation well, except under unusual conditions.
e. Level 5: Can do the entire operation well.
Step 3: Use a “multiple skills training schedule”
We are now ready to set separate targets for each trainee whose current skills we just evaluated in Step 2. We should keep it simple by displaying person-specific lists of current conditions and targets, rather than process-or skill-specific lists. Also, we should avoid numerical indicators if more easily understood graphic ones can be used. Popular graphic display formats for this include “multiple skills score sheets” and “multiple skills maps.” Figures 6.10 A, B, and C show three examples of multiple skills training schedules.

Step 4: Create a multiple skills training schedule that makes effective use of overtime hours and other opportunities
Once we have set specific targets for every worker, we need to set-up a multiple skills training schedule tailored to each worker's objectives. We should try to avoid using the noon hour, since that tends to disrupt production activities. It is better to use evening overtime hours.

Figure 6.10A Examples of Multiple Skills Training Schedule.
For training in U-shaped manufacturing cells, it is best to pair up trainees with experienced workers and have them work together until they can keep pace with the cycle time. During this time, we will likely see the

Multiple skills score sheet

Period: 4/1/88 to 6/30/88

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Process name</th>
<th>Pressing</th>
<th>Punching</th>
<th>Bending (1)</th>
<th>Bending (2)</th>
<th>Drilling</th>
<th>Finishing</th>
<th>Wins and Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 wins, 1 loss, 6 wins, 0 losses</td>
</tr>
<tr>
<td>Worker B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 wins, 2 losses, 1 tie, 4 wins, 1 loss</td>
</tr>
<tr>
<td>Worker C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 wins, 2 losses, 4 wins, 2 losses</td>
</tr>
<tr>
<td>Worker D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 wins, 3 losses, 4 wins, 2 losses</td>
</tr>
<tr>
<td>Worker E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 wins, 4 losses, 3 wins, 3 losses</td>
</tr>
<tr>
<td>Worker F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 win, 2 losses, 2 wins, 4 losses</td>
</tr>
</tbody>
</table>

Multiple skills score sheet

Period: Dec.–Jan. 1988

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Process name</th>
<th>Counter 1</th>
<th>Counter 2</th>
<th>DB</th>
<th>PL</th>
<th>MJ</th>
<th>BP</th>
<th>CD</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Worker B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Worker C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Worker D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Worker E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Worker F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Evaluation criteria
- Unlable to do operation
- Able to do the operation if someone else does the set-up
- Can generally do operation, needs minor guidance
- Can do the operation well, except under unusual circumstances
- Can do entire operation well

Color coding
- Black: 1987 results
- Red shading: Estimated 1988 results
- Red: 1988 results

Figures 6.10B,C
trainee and experienced worker develop a cooperative operations approach on their own.

Step 5: Periodically announce score sheet standings to raise worker awareness

At regular intervals, such as once or twice a month, factory supervisors should announce the trainees’ current score sheet standings to make everyone aware of recent progress and to identify cases of delayed progress that need special attention. It is better to report the multiple-skills progress of trained teams rather than individual trainees.

If you choose to give progress reports for individuals, it is best to report their current status as “X percent of the way to the target,” or in terms of “wins” and “losses” regarding specific skills (as shown in Figure 6.10).

And let us not forget the very important role the workshop leaders play in fostering multiple skills training. When learning a completely new skill, the trainee should begin by just watching an experienced operator or workshop leader do the job. These leaders in training have a direct and vital impact on the trainees. The trainees will learn the correct things, as well as any incorrect things, their more experienced colleagues demonstrate.

On-the-job training is clearly the best way to learn multiple skills for multi-process operations. Pulling a particular set of processes out of the production line to make an isolated island for training is not worth the time and trouble, since the training can be done within the production line.

In other words, training should be within the flow production system. This puts more pressure on performance. If we are just a little too slow, it causes problems for the next process. This keeps the trainees on their toes and aware of what is going on in the line. We call this method of training “multiple skills flow training.”
Multiple skills flow training should take the following steps.

Step 1: Have the workshop leaders do the job first

Equipment operators learn quickly if given a chance to watch others do the job first. That is why it is best to start just by having them watch an experienced workshop leader do the job.

Step 2: Explain the operation points

Seeing is not enough. We also need to explain the procedures and main purposes of each job and make sure the trainees understand them thoroughly. At the very least, the teacher should explain the particular cycle time, operation sequence, standard operations, quality check points, and safety points.

Step 3: Hands-on practice

The trainee has seen and heard what he or she needs to know, it is time for some hands-on practice. The trainee should be allowed to attempt the entire set of operations for the process. If he or she starts lagging behind the cycle time, the trainer can step in to help. After repeated practice, the trainee will be able to perform the job according to the particular standard operations.

For example, let us suppose that a certain job includes five processes. The operator will start at the first process, and then in succession move on to the four others. If, at the third process, the trainee starts lagging behind the cycle time, the trainer should step in to help with processes 4 and 5. (See Figure 6.11.)

This works better than having the trainee just practice process 1 until he or she has learned it. The one-process-at-a time approach is too much like having isolated processing islands. The trainee will not gain a feel for flow production unless the training uses a flow production line of closely linked processes.
Step 4: Review the training immediately.

It is important to reserve a little time immediately after each training session to review the session. This is the perfect time to have another look at the key points in the operation and to resolve any confusion over what has been covered in that session. This should not be a purely negative review by the trainer. The trainer should always remember to praise the trainee. Beginners naturally feel uncomfortable around veteran operators, and the trainee’s self-confidence is easily damaged. Harsh criticism is therefore often counterproductive. The trainer’s responsibility is to bolster the trainee’s confidence and enthusiasm. This is important.

In short, my advice to trainers of multiple skills for flow production is: show them, tell them, have them do it, then praise them. You need all four steps to get multiple-skill workers.
Chapter 7

Labor Cost Reduction

What Is Labor Cost Reduction?

The Approach to Labor Cost Reduction

Improvements in both productivity and humanity have long been major themes at factories everywhere. The market environment and needs differ from one era to the next, and factories must always attempt to make improvements in productivity and humanity that match the current market conditions.

Until recently, the general supply of products lagged behind demand, which in many cases meant, “If you can make it, it will sell.” Factories sought to expand output volume, and looked at productivity-boosting measures as a means of doing just that. Human labor became more and more specialized, and factories tried to give workers simple tasks that they could master quickly. This simplification of worker roles as little cogs in a big machine tended to rob workers of the joy of creating things, but it served the factory’s objective, which was to have a stable and highly regimented workforce that could turn out increasingly greater volumes of products. The following equation describes this volume-oriented approach to productivity.

\[
\text{PRODUCTIVITY} \uparrow = \frac{\text{PRODUCTION OUTPUT} \uparrow}{\text{PRODUCTION INPUT} \rightarrow}
\]

Eventually, the overall supply of goods overtook demand, leaving more room for diversification based on consumers’
individual preferences. Manufacturers began to notice that their large production runs of identical products were no longer selling as briskly. Sales forecasts heralded the dawn of a new era, in which high volume output could no longer be assured of high volume sales.

Manufacturers began searching for a better way of making products that would sell. This was the advent of today’s wide-variety, small-lot era. The soil was right for the JIT production system to take root. In contrast to the large-volume production approach that emphasized production and was thus a “product-oriented” or “product-out” approach, the new approach for the wide-variety, small-lot era emphasized the customers (that is, the market) and was a “market-oriented” or “market-in” approach.

Naturally, this new era saw growth in production volumes slow to a trickle. Manufacturers reckoned that the only feasible way to raise productivity in such a sluggish market climate was to reduce labor costs and other product input costs. They sought to cut labor costs by investing in greater mechanization and automation, but such improvements require a lot of investment funds and cannot ensure steady productivity because of rapidly changing market needs. Eventually, people started talking about building products more economically by matching production input to customer orders. This is the basic idea behind the labor cost reduction approach described in the following equation:

$$\text{PRODUCTIVITY} \uparrow = \frac{\text{PRODUCTION OUTPUT} \rightarrow}{\text{PRODUCTION INPUT} \downarrow}$$

Thus, we can define labor cost reduction as *meeting the needs (changes) of the next process (ultimately, the market) while incurring as few personnel costs as possible.*

Let us suppose, for instance, that a factory employs ten people to produce 1,000 units per month of product A. However, a recent slowdown in sales has shrunk customer
orders to just 800 units a month. The traditional response to this situation is expressed in the following equations. The equation expressing the previous order level is:

\[
\frac{1000 \text{ UNITS}}{10 \text{ PERSONS}} = 100 \text{ UNITS} \quad \text{(Number of products produced per month by each person)}
\]

The equation expressing the new order level is:

\[
\frac{800 \text{ UNITS}}{100 \text{ UNITS}} = 8 \text{ PERSONS} \quad \text{(Labor cost)}
\]

The arithmetic is quite simple; assuming each worker can produce 100 units per month, the factory simply needs to reduce its workforce from 10 persons to 8 persons. However, it may not be so simple to reduce a ten-person workforce by two persons, especially if each of the ten workers specializes in handling just one type of machine.

This problem has forced some manufacturers to discard the concepts of single-process operations and strictly defined job roles and to instead embrace the new notions of multi-process operations and flexible job roles.

The realization of this kind of labor cost reduction is not without its technical obstacles, and the chief obstacle is a psychological one: giving up the fixed idea of large lot production.

The Difference between Labor Cost Reduction and Labor Reduction

Terms such as “labor reduction” and “labor savings” are familiar to all of us. We tend to think in these terms when confronted with the following types of situations.
Let us suppose that a factory has been using a single-spindle drill that required some manual assistance in drilling. Then the factory managers decide to buy a numerically controlled (NC) drill to automate more of the drilling work. However, the NC drill still requires a human operator, and so the factory is unable to reduce its manpower even after purchasing it. Whereas the worker used to be busy with manual drilling, now he or she simply sets up the workpiece, presses a start button, and watches the NC drill do the drilling. The NC drill has realized a labor savings (that is, the worker has less work to do), but not a labor cost reduction.

This case illustrates the meaning of the familiar term “labor savings.” The investment in the NC drill has raised the plant investment cost without bringing a reduction in labor costs, so overall costs are actually higher than before.

Another familiar term is “staff reduction.” Staff reduction means responding to demand fluctuations by simply reducing the number of workers without making any waste-eliminating improvements. However, if we just reduce the number of workers without making such improvements, the result will be labor intensification—in other words, more work to do for the remaining workers. Obviously, this kind of labor cost-cutting cannot go on for long. The following short definitions should help clarify the distinctions we need to make among labor reduction, staff reduction, and labor cost reduction.

- **Labor reduction**: Reducing the workload without cutting labor costs.
- **Staff reduction**: Reducing the workforce without removing waste (which means a heavier workload for remaining workers).
- **Labor cost reduction**: Removing waste, then using the minimum required workforce.
Labor Cost Reduction Steps

To be able to respond flexibly to changes in customer orders, we must have flexibility throughout our production system. Hence, the concept of “flexible production.”

But exactly what needs to be made flexible? Everything—meaning every main element of production, from people and materials to machines, operating methods, and management. Let us look at these elements one by one.

- **People:** We can increase human flexibility by training single-skilled workers to become multi-skilled workers.
- **Materials:** We can improve flexibility in materials by moving from diverse specifications to shared specifications.
- **Machines:** Machines can in several ways be made more flexible by:
 1. Making nonmovable equipment movable.
 2. Switching from large machines to smaller ones.
 3. Switching from expensive machines to cheaper ones.
 4. Switching from costly “do-it-all” machines to cheaper specialized machines.
- **Operation methods:** Again, flexibility may be enhanced in several ways by:
 1. Abandoning lot production in favor of one-piece flow production.
 2. Switching from strictly defined job roles to flexible job roles.
 3. Switching from separate job responsibilities to cooperative job responsibilities.
 4. Giving up idiosyncratic operations and enforcing standard operations.
 5. Switching from “push production” to “pull production.”
- **Management:** We can increase management flexibility by de-emphasizing statistical control and emphasizing visual control.
Thus, we need to make all sorts of changes to make the factory conducive to flexible production. Below, I have arranged some of these into a sequence of changes needed for realizing labor cost reduction.

Step 1: A Change in Philosophy

It is not possible to give up lot production and strictly defined job duties without also giving up the whole conventional “way of doing things.” Even when someone decides, “OK, I’ll give up all my preconceived notions about how things should be done,” it is much easier said than done. Often, the old way of doing things is very old indeed; some workers have been doing things the same way for ten or even 20 years! The old way has become a deeply ingrained habit and cannot simply be cast aside. Workers who cannot bring themselves to admit the need for a change in philosophy might as well start preparing for retirement. Labor cost reduction requires flexibility, and flexibility must begin in the mind.

Step 2: Make Production Equipment Easy to Move Around

Large units of production equipment tend to have an imposing presence, as if they were standing with arms crossed and chest thrust forward, proclaiming, “I make widgets and I make them right here.” We tend to lose our enthusiasm for making layout improvements when we come face to face with such huge machines that have usually been bolted to the floor. At such times, let us remember the following:

1. Whenever possible, install casters on equipment and work tables to make them movable. We must install the casters in a way that does not raise the height of these units.
2. If the machine has an oil pan under it, find out what is causing the oil leakage, fix it, then remove the oil pan and install casters.
3. Some machines have air ducts or power cords that limit their movability. In such cases, try lengthening the cord (make sure the length still meets safety specifications) and install flexible air ducts if possible.

Step 3: Get Rid of Processing Islands and Integrate Equipment into a Line

Labor cost reduction is not possible if workers are assigned to their own little isolated processing stations. We have to begin by bringing all those little islands together into one “land mass” so that workers can be grouped in one place. Once we have grouped our line workers, we can make a better line layout and start making improvements for one-piece flow production.

Step 4: Train for Multi-Process Operations Instead of Simple, Specialized Operations

The more we break production operations up into little pieces to be handled by different workers, the farther we get from labor cost reduction. Instead, we need to train workers in the multiple skills they need to handle multi-process operations. At each step of the way, we also need to implement thorough standardization.

Step 5: Standardize Equipment and Operations

Thorough standardization of equipment and operational procedures is essential for promoting multiple skills training. This training will progress much more rapidly if we can make the equipment easy enough for anyone to operate and the operations easy enough for anyone to perform.

Step 6: Level Out Production and Assign Appropriate Workloads

Find an average spread for product models versus volume, then divide this up by the cycle time and use the result as a basis for establishing standard operations. Use the cycle time
to calculate the daily production output per person, then find the number of required workers depending upon how much each worker can do. (This procedure is described in detail in Chapter 10.)

When carrying out the above procedures, we must be careful to avoid putting too many workers on the line just because the workers are available. We must not ignore how much work each worker can comfortably handle. Workers are easily tempted to think, “Let’s just take it easy since things are slow now.” Managers tend to get lax about standards. Implement the 5S’s and improvement activities to find out how much slack there is in the workforce and tighten up operations.

Points for Achieving Labor Cost Reduction

We must not make compromises when carrying out the above steps for achieving labor cost reduction. These steps include five salient points, which I list and describe below in the order of their appearance in the labor cost reduction steps.

- Develop flow production
- Cultivate multi-process workers
- Work in groups: no isolated workers
- Cooperative operations
- Separate people (from machines)

Develop Flow Production

Here are some typical characteristics of factories that are not conducive to flow production:

1. Equipment layout and operational methods are set-up according to the “job shop” model.
2. Equipment units are bolted in place and cannot be moved.
3. Each worker has distinct and strictly defined job duties.
4. People generally think large lots are better than small ones.
5. At processes where there is a lack of workers, workers are moved around “caravan style.”

To begin changing from lot production (shish-kabob production) to one-piece flow production, we must do away with all of these obstructive characteristics.

Figure 7.1 shows an example of flow production on an assembly line for medical equipment. Before improvement, this line used eight workers, each of whom had a separate set of assigned tasks. This rigidity in task assignments made it nearly impossible to juggle operations when order levels fluctuated.

As part of the improvement, the layout was changed to accommodate flow production and operations were switched...
from shish-kabob production to one-piece flow. The switch to multi-process operations not only enabled a labor cost reduction of two workers, but also made the line adaptable to ups and downs in order levels.

Before improvement, all of the workers sat while working. The improvement changed this to standing while working, which freed a lot of space. The extra space and unneeded chairs were used to make a rest area, which the assembly line had previously lacked.

Multi-Process Operations

To reduce the manpower required for a certain amount of production output, we first need to establish flexible job duties. Second, we must establish multi-process operations. This second step is the key to success in labor cost reduction.

If we were to try to reduce manpower without first establishing multi-process operations, we would have to follow these steps:

1. Removing one or more workers from the line.
2. Reassign job duties to the remaining workers.
3. Balance the line.
4. Set the conditions achieved after operational balancing as standard operations.

Each time the line changes to a new product model or the required production output goes up or down, we would have to go through all four of these steps all over again. Given today’s frequent fluctuations in product models and volumes, this time-consuming process of reassigning job duties and balancing the line after each adjustment of the manpower makes this kind of labor cost reduction more trouble than it is worth. What factory managers are really wishing for is the kind of flexibility that enables them to easily reduce manpower one day to meet that day’s output
needs and to just as easily add manpower the next day. Only multi-process operations can make this wish come true, and that is why I call multi-process operations the key to successful labor cost reduction.

The three most important factors in establishing multi-process operations are:

1. Line workers must stop sitting and instead stand while working.
2. Lay out processes according to the processing sequence and make each worker take individual workpieces throughout the entire set of processes.
3. Set-up a company-wide multiple skills training program.

Once we have established one-piece flow using multi-process operations, the lead-time will be much shorter, and the shorter the lead-time, the lower the amount of in-process inventory.

Figure 7.2 shows how multi-process operations were established at a wood products factory’s processing/assembly line.

Figure 7.2 Multi-Process Operations for Processing Assembly Line at a Wood Products Factory.
Before this improvement, almost all work done by the line workers required special skills, and workers skilled in one process were rarely able to handle other processes. To change that, they first dramatically altered the layout, then trained their workers in multiple skills, and finally established one-piece flow using multi-process operations. They also made a very clever improvement in the drying process. Before, they had used a large drying chamber for drying glued parts. But since this chamber was too large for multi-process operations, they instead opted for a smaller machine that uses ordinary hand-held hair dryers and an auto-return device that returns the glued workpieces to the input site after they have been dried.

Not only did this improvement make the flow of goods on the line much more visible, it also made it easy to adjust the manpower to suit changing output requirements. It also helped get rid of waste, such as conveyance waste, caused by having isolated process stations.

Work in Groups: No Isolated Workers

We can distinguish among three types of “islands”—small, medium, and large—at which workers do their jobs with no direct relationship to other workers.

- **Small islands**: Small islands are isolated areas where one or more workers are kept busy doing simple tasks, such as bagging items or mounting washers. Often, such islands are used to prepare parts for assembly.
- **Medium islands**: Usually, medium islands consist of medium-sized equipment, such as drills or lathes, that are used apart from the processing line and that move at their own pitch. As such, they are common in processing sections of factories.
- **Large islands**: Large islands generally include large equipment units, such as cleaning, coating, or welding...
machines, all of which are designed for large-lot processing. Most common in processing sections, large islands are like dams that hold back the flow of goods. Sometimes, large islands require their own room or even their own factory facility.

If we have a large island, the most important point is to develop and make smaller equipment. If we have a medium island, we need to overhaul the layout and arrange the equipment according to the processing sequence. Finally, if we have a small island, our first step is to group the workers and assign cooperative tasks.

Figure 7.3 shows an improvement that was made at a household electronics assembly plant. Before the improvement, each worker worked separately at his or her own pace. Naturally, this imbalance resulted in a lot of waste caused mostly by operations, in-process inventory, and conveyance.

If we look at each worker involved in a small processing island, we can see the waste that is caused. But since the workers are separate, it seems there is nothing that can be done to improve the situation.

At the household electronics assembly plant, they began by setting up a conveyor and grouping all of the workers together. A conveyor can be valuable not only as a tool for maintaining a certain pitch, but also as a tool for grouping workers together.

After grouping their workers together, they laid out the various processes in order, then used the cycle time as a basis for assigning tasks. This helped eliminate the waste caused by having separate workers and also enabled a labor cost reduction of one worker.

Cooperative Operations

It is not at all unusual to have workers stand while working if they are working on processing tasks and using a lot of
machines, tools, and other equipment. In fact, it is hard to find seated workers doing this type of work. In assembly line work, however, the situation is almost the opposite.

Assembly line workers tend to plant themselves on their stools or benches and seem to believe they can get their jobs done perfectly without having to take one step. About the only time they use their legs is to join or leave the assembly line. Before improvement

After improvement

(1) Group separate workers together
(2) Balance the lines
 - Balance soldering (2) and wire connecting (1)
 - Balance cover installation and basic assembly
 - Balance basic assembly, inspection, and packaging

Figure 7.3 Manpower Reduction at Household Electronics Assembly Line.
Labor Cost Reduction

As long as work procedures are that rigidly established, labor cost reduction is impossible and it is even difficult to raise productivity. Before we can make any significant changes, we must establish the fundamental elements of cooperative operations, which are “standing while working” and “offensive (proactive) operations.”

Figure 7.4 shows how cooperative operations and labor cost reduction were both realized at a VCR assembly line.
Before the improvement, the rigid task assignments made even slight increases in output something that required overtime work. Reductions in output were addressed by slowing down the pitch.

Because each line worker had his or her own strictly defined, separate tasks to perform, the line was not easily adaptable to model changes or fluctuations in daily output needs. If the managers were to remove just one worker (out of 61) in response to lower output requirements, they would have to take the time and trouble of balancing the remaining 60 workers on the line.

The answer, then, is to broaden the sphere of work that each line worker is responsible for, so that job duties overlap between neighboring workers and therefore workers can help their neighbor when he or she lags behind. This makes the line more adaptable to model changes and production output changes that occur from day to day. This improvement also helped get rid of the waste related to imbalances and made the line easily amenable to manpower adjustments in accordance with output changes.

Separate People (from Machines)

Most factory equipment operators are only rarely able to physically separate themselves from their machines and do other productive work while the machines are operating. The reasons for this unfortunate situation include:

1. Some of the processing activity requires assistance from the operators’ hands or feet.
2. Operators have to set-up and retrieve workpieces manually from the machines.
3. Even when the operators do not have to touch the machines during their operations, they still must use their eyes and ears to detect defects or other problems.
4. Occasionally, operators are able to leave the machines completely alone, but only for a few seconds, so there is no significant separation.

5. Even when operators are able to leave the machines alone for significant lengths of time, there is nothing else at hand for them to do.

If the reason is any of the first three listed above, we need to develop some kind of device that will enable the operators to separate themselves completely—including their eyes and ears—from their machines. If the reason is the fourth or fifth one, we need to find them something more productive to do than just standing and watching the machines do their work. (Separating human work and machine work is described in detail in Chapter 14.)

Figure 7.5 shows how human work was separated from machine work in a printed circuit board (PCB) washing process. Before the improvement, the operator of this process had to insert the PCB manually into the washer and extract it manually after it was washed. Depending upon the timing
of the insertion, it could take several seconds until the PCB was ready to be extracted, during which time the operator was just standing by.

After the improvement, a human automation device was applied to the extraction step so that the operator no longer had to extract the PCB manually. Now, a shooter automatically moves the washed PCBs onto a conveyor line. After setting up each PCB in the washer, the operator can leave the machine alone and do other work.

Visible Labor Cost Reduction

Multiple Skills Training Schedule

Multi-process operations are the most decisive factor in achieving labor cost reduction. Once all workers have been trained for multi-process operations, it is a cinch to move workers around and to add or subtract workers to suit current manpower needs.

While this method known as multi-process operations is vital to such flexibility, it is the operators themselves who make it a reality. In other words, the key point for labor cost reduction is to have all workers trained in the multiple skills needed for multi-process operations.

Multiple skills training schedules, multiple skills maps, and multiple skills score sheets (all described in Chapter 6) promote progress in multiple skills training by making the training more visible.

The following are five steps we should take in training workers for multi-process operations. At each of these steps, we need to reaffirm a positive attitude that should include the three “P’s”: Painstaking care, Patience, and Perseverance.

- Remember the three “P’s”: Painstaking care, Patience, and Perseverance.
The five steps in multiple skills training are:

1. Find a way to describe and/or illustrate the workers’ current skill levels so that anyone can understand them.
2. Once or twice a year, evaluate and display progress in multiple skills training.
3. Make up a schedule of skills achievement targets.
4. At weekly, biweekly, or monthly intervals, mark the results that indicate progress toward achieving skill targets, and announce these results at meetings or other appropriate occasions.
5. Some trainees may find certain processes difficult to master. This is when the workshop leaders need to step in and provide moral support and extra training.

Labor Cost Reduction Display Board

In assembly lines, the first parameter to keep track of is the pitch time (otherwise known as the cycle time). We must at least keep track of the line’s rhythm: How many units are we turning out per day and does this match the current volume of orders? This information is so vital that it should always be available to us at a glance.

If we want to improve the range of immediately available information, we should also include an up-to-date display of labor cost reduction parameters. In other words, how many workers does the line currently require? It is helpful to have that information around to check at any time.

Figure 7.6 shows a “labor cost reduction display board” that can serve just this purpose.

Once we know how many units each worker can reliably turn out in a day, we divide the day’s total output by that number of units to obtain the minimum number of workers needed for the day. For instance, let us suppose that each worker on the assembly line can assemble 100 units a day:
1. If the total output is 1,000 units, the number of required workers is 10, and the pitch time is 28.8 seconds per unit (based on an eight-hour workday).

2. If the total output is 1,200 units, the number of required workers is 12, and the pitch time is 24 seconds per unit (based on an eight-hour workday).

It is good to keep a labor cost reduction display board (such as the one shown in Figure 7.6) posted in a conspicuous place so that everyone at the assembly line can quickly refer to it at any time.
Kanban

Differences between the Kanban System and Conventional Systems

The Reordering Point Method and the Kanban System

Many people think the kanban system comprises the central technique around which JIT production is built. Let it be understood, however, that kanban are just one of several tools used to maintain JIT production and are by no means a central aspect of the JIT production system.

It has been said, “Wherever there are kanban, there is in-process inventory.” Kanban and in-process inventory are indeed very closely related to each other. We can find kanban circulating here and there all over many Japanese factories. Because the kanban are in such conspicuous use, the factory workers imagine they have established JIT production in their factory. From the perspective of true JIT production, one might ask, “Why use kanban?” There is no reason why kanban should be absolutely necessary for every JIT production system. Rather, the essential thing in JIT production is a healthy flow of goods. The kanban system is not even an original idea, really. It is something that grew out of a statistical inventory management method known as the reordering point method.
As its name suggests, the reordering point method enables factories to reorder the same volume of parts or products each time. When the inventory amount drops to a certain level (the reorder point), another order is issued for the same amount as before to replace the depleted inventory.

Let us examine a list of the reordering point method's chief characteristics:

- It enables inventory to be managed without having to pay attention to demand fluctuations.
- It is not suitable when sharp demand fluctuations are typical.
- It helps keep inventory management costs down.
- It is conducive for use in an automated reordering system.
- It helps lighten the clerical workload.

In view of the above characteristics, we can conclude that the reordering point method is a good inventory management method when the inventory consists of products having the following three characteristics:

1. A stable consumption volume
2. Easy to purchase and easy to store
3. Relatively inexpensive

We should regard the reordering point method's unsuitability for products whose market demand fluctuates sharply as the method’s most important characteristic. This means, of course, that this method is only suitable for managing inventory of products that have stable demand.

We should also note that the exact same problem exists for the kanban system: If demand has large and unpredictable ups and downs, even the kanban system will not prevent product shortages or gluts. At the production planning stage, we can spread out the various product models and volumes
and average them out. This is called “level production.” (Level production is described further in Chapter 10 of this manual.)

If we use level production to help minimize waste, we are no longer able to manufacture products in large batches or lots. Therefore, factories that rely mainly on lot production or batch production need to use a rather strict production method. Figure 8.1 lists some of the similarities and differences between the reordering point method and the kanban system.

Figure 8.1 Similarities and Differences between the Reordering Point Method and the Kanban System.

<table>
<thead>
<tr>
<th>Similarities</th>
<th>Reordering Point Method</th>
<th>Kanban System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enables inventory to be managed without paying attention to demand fluctuations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Not suitable when sharp demand fluctuations are typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Helps keep inventory management costs down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Conductive to use in an automated reordering system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences</th>
<th>Information and goods</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and goods are kept separate from each other (inventory [= goods] is managed according to the warehouse entry/exit vouchers [= information]).</td>
<td>Information (kanban) and goods are kept together.</td>
<td>Requires constant inventory management (warehouse entry/exit management)</td>
</tr>
<tr>
<td>Management requires constant inventory management (warehouse entry/exit management)</td>
<td>Does not require management</td>
<td></td>
</tr>
<tr>
<td>Visual control</td>
<td>Does not enable visual control</td>
<td>Enables visual control</td>
</tr>
<tr>
<td>Relationship with factory</td>
<td>Managed separately from the factory</td>
<td>Closely related to the factory and factory operations</td>
</tr>
<tr>
<td>Relationship to improvement activities</td>
<td>None</td>
<td>Decreasing numbers of kanban indicate a need for improvement.</td>
</tr>
</tbody>
</table>

Conventional Production Work Orders and the Kanban System

Conventional production work orders indicate the type of production to be carried out at each process based on process-specific operation plans that have been developed as part of the overall production schedule. This means that each process relates vertically to the production schedule and not
horizontally to other processes. Nevertheless, production is still a series of processes.

Usually, factories that use conventional production work orders also use the “push system” in which the upstream processes take priority over downstream ones in terms of how goods are moved and controlled between processes. By contrast, the “pull system” is a basic principle of the *kanban* system. As shown in Figure 8.2, the pull system means that downstream processes fetch from upstream processes only the goods that are needed, only when they are needed, and only in the required amounts. Naturally, as an upstream process is depleted of its products, it “pulls” more workpieces

Figure 8.2 Differences between Conventional Work Orders and *Kanban*.
from the previous process, and this gets repeated as a chain reaction all the way up the line.

Figure 8.2 illustrates some of the differences between the push system and the pull system. The push system emphasizes the flow of information in that it “pushes” or “imposes” the production schedule and the in-process inventory onto downstream processes. In the pull system, kanban are attached to in-process inventory, so that when goods are pulled from a process by the next process, the item indication on the kanban can serve as a work order for the previous process.

The biggest difference between the push system and the pull system is the way information relates to actual goods. While the push system deals primarily with general production-related information first, after which production flow occurs as a result, the pull system deals with process-specific information and the transfer of goods. The pull system therefore makes it easy for changing conditions in downstream processes to impact upon upstream processes. The push system tries to stubbornly fulfill the original production schedule no matter what is going on downstream. This rigidity is reflected in the unchangeable nature of the typically “confirmed” production schedule for the next week and the “estimated” production schedule for the following three weeks. Even if the flow of goods in the factory should change drastically from what was envisioned when the production schedule was created, the inventory brought in for that schedule is still imposed upon downstream processes regardless of its actual value under the changed situation.

By contrast, the pull system dictates that as soon as clients order certain products, work orders for those products are sent to the assembly line, which in turn orders the parts it needs for those products from the processing line. The processing line then orders from the materials procurement people, and so on. This means that order information (that is, kanban) travels upstream from sales to assembly, instead of downstream from planning to materials procurement. This makes for a very flexible production system.
Functions and Rules of Kanban

Functions

As I said earlier, kanban comprise a tool for establishing and maintaining Just-In-Time production. As such, it is similar to the autonomic nervous system. When some kind of problem occurs at a downstream process, the system has a function for alerting upstream processes and stopping the production line.

In other words, kanban have two main functions.

Function 1: To Act as an Autonomic Nervous System for Just-In-Time Production

Kanban pass along information about downstream conditions to upstream processes, just as the autonomic nervous system notifies the brain of stimuli encountered by the body’s peripheral nerves. This function can be broken down into two main roles.

1. *To provide pickup and work order information.* In this role, kanban provide two types of information: data about which items have been used and in what amounts, and also instructions on where and how certain items are to be manufactured.

2. *To eliminate overproduction waste.* In the kanban system, production occurs when goods are pulled from upstream processes. Otherwise, no production occurs. This is what makes the kanban system a “pull system.”

Function 2: To Improve and Strengthen the Factory

As long as kanban are used as information, they remain attached to the goods that they give information about. As such, kanban serve beautifully as a visual control tool. This function of kanban also plays two roles:

1. *A tool for visual control.* Conventionally, production-related information is issued first, and the actual goods
come into play later on. In the kanban system, though, the information arises as a result of the consumption of goods. Therefore, kanban are always used with actual goods. And the way (including the order) in which kanban are eventually detached from goods shows us an obvious indication of how factory operations are proceeding and which goods in the flow of goods are receiving the highest production priority. This makes kanban an excellent tool for visual control.

2. A tool for promoting improvement. Inventory tends to conceal problems in the factory. Similarly, an overabundance of kanban indicates there is too much slack in the in-process inventory. Reducing the number of circulating kanban can help reveal the problems that can remain hidden under such slack conditions.

Rules

As mentioned above, kanban are the factory’s autonomic nervous system and are a tool for building a stronger, healthier factory. The following six rules must be observed if we intend to make the most of kanban’s potential for factory improvement.

Rule 1: Downstream Processes Withdraw Items from Upstream Processes

Rule 2: Upstream Processes Produce Only What Was Withdrawn

Upstream processes must always produce in direct relation to downstream production. In other words, the previous process should produce only what was needed by the next process, only when needed, and only in the amount needed.

Rule 3: Send Only 100 Percent Defect-Free Products

Quality is built in at each process, and processes should never send any defective goods downstream. Passing the quality
buck not only creates confusion at downstream processes, it also conceals problems at the defect-producing process and ultimately brings disorder to the entire factory.

Rule 4: Establish Level Production

Production leveling is a method that eliminates variation in flow at different processes and helps maintain stable, smooth production. (See Chapter 10 for a detailed description of production leveling.) This is different from the kind of balancing of load that occurs in a shish-kabob production system when using a planning method called Capacity Requirements Planning (CRP). Rather, it is the thorough balancing of product models and volumes within the framework of the production schedule.

Rule 5: Workshop Indicators

Kanban should also move with the goods to ensure visual control.

Rule 6: Use Kanban to Discover Needs for Improvement

By gradually decreasing the number of *kanban* in circulation, we can better reveal missing items and line-stopping problems, which we need to follow up with causal analyses and improvement measures.

How to Determine the Variety and Quantity of Kanban

Types of Kanban

First of all, let us be sure we understand the distinction between *kanban* and the signboards that describe where things are placed in the workshop. The latter are the manifestations of the “signboard strategy” that serve to make orderliness—one
of the 5S's—more visible. (See Chapter 4 of this manual for a description of the signboard strategy.)

Since the Japanese word *kanban* corresponds to “signboard” in English, *kanban* and signboards can be easily confused. In this manual, we use the English word “signboard” when discussing the signs used in the signboard strategy and the Japanese word “*kanban*” when discussing the signs attached to in-process inventory that comprise the factory’s autonomic nervous system.

There are as many types of *kanban* as there are types of *kanban* applications. Figure 8.3 classifies these *kanban* types according to their functions.

Let us look at these *kanban* types in more detail.

Type 1: Supplier Kanban

Also known as “parts-ordering *kanban*,” these *kanban* are used to order large numbers of parts that need to be delivered to assembly lines. Often, such *kanban* are sent to outside suppliers who deliver the parts on demand (see Figure 8.4).
Assembly lines also use parts that are processed and delivered from within the same factory. In-factory kanban are used to order such parts from upstream processes. Thus, they are also known as “pickup kanban” or “withdrawal kanban.” (See Figure 8.5.)

Sometimes, in-factory kanban are used even when only one part is being withdrawn, or they can be used as “sequential withdrawal kanban” for when parts must be supplied in a certain order for assembly. The types of in-factory kanban
Kanban

can range from ordinary plates to “box kanban” (attached to boxes) and “cart kanban” (attached to carts).

Type 3: Production Kanban

Production *kanban* are used for in-process inventory within processes. These are the type of *kanban* most people think of first when *kanban* are mentioned in an overall sense. Usable in either specialized or nonspecialized lines, production *kanban* give instructions on operations at each process that does not require any (or hardly any) changeover time (see Figure 8.6).

Type 4: Signal Kanban

Moving some types of equipment (such as presses) directly into the production line can be difficult due to the costs involved. In addition, when model changes occur, the changeover procedures for such equipment can be quite time-consuming. As a result, lot production is sometimes unavoidable, at least at processes using these kinds of equipment. Signal *kanban* are used for such lot-production situations. (See Figure 8.7.)

How Many Kanban Do You Need?

Kanban help maintain level production. They also help maintain stable and efficient operations in which the same
procedures are repeatedly performed: in other words, standard operations. Before *kanban* can help maintain these things, however, we must establish an even spread of product models and volumes at the production planning stage.

At factories that include mostly standard, repeated operations, the number of *kanban* can be determined as shown below (see Figure 8.8), based on the premise of level production.

If the factory specializes in custom-order products, each order will need one *kanban* as the work order *kanban*. However, this *kanban* should also indicate when to produce the ordered item. And if, for example, the finished products at a certain process are placed into two or three different places, the *kanban* should also indicate from which site or sites the

Figure 8.7 Example of Signal *Kanban*.

Figure 8.8 How Many *Kanban* Do You Need?
next process will withdraw the product. Even in this case of a custom-order factory, the *kanban* serves not only as a placement *kanban*, but also as an indicator of when the next process may come to withdraw items under a pull system.

Administration of Kanban

Kanban Administration in Processing and Assembly Lines

At one time, *kanban* was a big fad in Japan. It seemed that every factory was adopting the *kanban* system. But nine out of ten companies that adopted it found it did not work for them as they had expected. What was the problem?

Usually, the problem was that the factory tried to reap some benefits from the *kanban* system alone, without bothering to change its “shish-kabob” production system or its “push” system for moving goods through the line.

From the perspective of eliminating waste, it is best not to use any *kanban* at all. After all, for a factory to have *kanban*, it must have in-process inventory, and in-process inventory is itself a form of waste.

Unfortunately, the use of *kanban* can become a counter-productive fixed idea, just like any other firmly established practice. People eventually delude themselves into believing that their factory could not possibly operate without *kanban*. Before adopting *kanban*, it is best to take on the challenge of establishing thorough flow production.

Figure 8.9 shows an example of how *kanban* are used in assembly and processing operations. In this case, the transport *kanban* are the pallets themselves and the production *kanban* are hung on the “dispatch board” used for work scheduling.

After the improvement, this factory had sharply reduced its inventory levels compared to its previous days of production determined by the operations schedule. The factory was
also able to greatly reduce its lead-time for manufacturing scheduling and boosted productivity to about double its prior level. In addition, the flow of goods was made much more visible, which made problems easier to discover. Even when the required output rises, the factory is able to respond with faster turnover instead of larger lots, so it can maintain fairly steady inventory levels.

Figure 8.9 Use of Kanban in Processing and Assembly Lines.
Administration of Purchasing-Related Kanban

Figure 8.10 shows an example of purchasing kanban that indicate information about withdrawn items. In this example, the kanban are not passed to the purchasing agent, but instead are used only in the factory. To make this possible, the factory counts the number of kanban to obtain the number...
of orders, then fills out an order sheet and telefaxes it to the purchaser, along with the individual kanban numbers.

When items are delivered, the kanban having those numbers are picked up and attached to the items on the way to the storage site. This means the kanban are also used in place of delivery vouchers.

Before making this improvement, the person in charge of ordering had no clear idea of how goods were flowing in the factory, and in fact had to come to the factory every day to find out what needed to be ordered. This situation led to larger and larger inventories, missing items, and a general lack of stability. After the improvement, inventory was reduced sharply, the problem of omitted orders was eliminated, and materials processing became much smoother thanks to the stable supply situation.

A Novel Type of Kanban

Figure 8.11 shows a rather exceptional and interesting example in which kanban in the shape of golf balls are sent back from the assembly line to the processing line via a pneumatic chute and gutter.

This “golf ball” kanban system eliminates the need for manually retrieving and issuing kanban. When an assembly line worker starts using a new box of parts, he or she removes
the golf ball *kanban* that comes with the box and sends it through the chute back to the processing line.

These golf ball *kanban* indicate output amounts and use different colors to indicate different product models. The pneumatic chute places the balls onto a gutter that carries them across a distance of 200 to 300 meters. They are then “plunked” right in front of the processing workers. Since the golf balls come in the order in which the parts boxes are used on the assembly line, it is easy to maintain that same order on the processing line.
Chapter 9

Visual Control

What Is Visual Control?

Why Aren’t Improvements Happening?

Many factories that are rich in improvement activities are poor in actual improvements. It is not so much that they do not know how to go about implementing improvement activities; it’s just that they have failed to identify the factory’s current problems and the various forms of waste that inhabit the place.

There are some excellent factories around, and there are some wretched ones. But the former do not necessarily have fewer problems than the latter. Every factory has lots of problems—not one is problem-free. So what separates the good factories from the bad ones? The answer is seen in the way they respond to problems: Good factories respond promptly and effectively, bad ones respond slowly (if ever) and ineptly. Good factories are good at revealing hidden problems. They are also good at getting the whole company behind finding the root causes of problems and making corrective improvements.

But things are never the same from one day to the next. No sooner have we solved yesterday’s problems than we find today’s problems staring us in the face. The question is, do we continue to jump at the opportunity of analyzing and solving the steady flow of problems as they arrive? If we do, our improvement activities are going somewhere.
Keeping up with problems as they occur is where bad factories fail. First of all, current problems and waste are often not easy to identify. The reasons why certain defects occur or why certain deliveries tend to run late are hidden or extremely vague. Factories tend to overlook such problems or “let them slide.” Obviously, such an attitude will not bring success in solving problems and eliminating waste.

Even when a factory is successful in solving a set of problems, the world keeps changing. Before they know it, the factory employees have a new, perhaps more difficult, set of problems on their hands. The longer they are kept busy with those problems, the more time new problems have to accumulate. Eventually, the factory finds itself overwhelmed by the crush of problems and is no longer able to navigate the treacherous road to survival.

How can factories keep pace with the daily onslaught of problems? The answer is threefold:

1. By learning to distinguish promptly between what is normal and what is not.
2. By making abnormalities and waste obvious enough for anyone to recognize.
3. By constantly uncovering needs for improvement.

“Visual control” begins with making the factory’s myriad abnormalities and forms of waste so clear that even a rookie will recognize them.

All too often, factory management becomes a desktop activity centered on statistics and number-crunching. Only the specialists understand what is going on with all those numbers. For example, let us consider what many factories do with their inspection results and other quality-related information. They take the numbers and plot them on various types of charts. And that’s it. Rarely do they use such information as ammunition in improvement campaigns.
Types of Visual Control

Visual control is what JIT production offers as a means of turning specialist-knowledge management into plain and transparent management by everyone. We might even go as far as to say that visual control is JIT’s way of “standardizing” management.

Visual control includes many application methods, each suited to a different type of management problem. Some visual control methods help identify waste while others help bring latent problems to the surface.

Figure 9.1 lists visual control’s main tools and methods, which are described below.

1. Red tag strategy
 The “red tag strategy” refers to the red tags that are used when establishing the “5S’s”: proper arrangement (seiri), orderliness (seiton), cleanliness (seiso), cleanup (seiketsu), and discipline (shitsuke). The red tag strategy helps lay the foundation for improvement by making obvious which items are not needed for daily production activities.

2. Signboard strategy
 The signboard strategy is another visual control tool for establishing the 5S’s. Signboards clearly show where tools and other items belong in the workshop so that anyone can find his or her way around easily.

3. White demarcators
 White tape or paint can be used effectively to enforce orderliness by marking off pathways, inventory storage sites, and other areas.

4. Red demarcators
 We use red demarcators on warehouse shelves, in-process inventory storage areas, and other inventory storage sites to indicate the maximum allowable amounts of inventory. In addition to using red marks to indicate maximum levels, we might also use green tape or paint
to show minimum levels. The idea is to make inventory shortages or surpluses obvious for everyone.

5. **Andon**

As the “front line” leaders in the factory, supervisors such as foremen and section chiefs need to keep a close and steady watch on workshops to make sure the workers and the machines are doing the job right. When an abnormality

Table 9.1 Visual Control Tools and Methods.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red tag strategy</td>
<td>![Red tag]</td>
<td>The red tag strategy helps us distinguish needed items from unneeded items in the workshops. Red tag teams use red tags to mark unneeded items for removal.</td>
</tr>
<tr>
<td>2</td>
<td>Signboard strategy</td>
<td>![Signboard]</td>
<td>In the signboard strategy, we set up signs that indicate what belongs where and in what amount, so that anyone will be able to understand where things belong.</td>
</tr>
<tr>
<td>3</td>
<td>White line demarcators</td>
<td>![White line]</td>
<td>When organizing workshops in an orderly condition, marking out pathways and in-process storage sites with white tape makes it easy for anyone to keep the workshop neat.</td>
</tr>
<tr>
<td>4</td>
<td>Red line demarcators</td>
<td>![Red line]</td>
<td>Red line demarcators form part of the signboard strategy. We set up poles next to inventory (warehouse or in-process inventory) stacks and mark the maximum allowable stack height with a red line to show when excess inventory exists.</td>
</tr>
<tr>
<td>5</td>
<td>Andon (alarm lamps)</td>
<td>![Andon]</td>
<td>Andon immediately alert factory supervisors to abnormalities that occur in the factory.</td>
</tr>
<tr>
<td>6</td>
<td>Kanban</td>
<td>![Kanban]</td>
<td>Kanban are administrative tools that help us maintain Just-In-Time production. The two main types of kanban are transport kanban and production kanban.</td>
</tr>
<tr>
<td>7</td>
<td>Production management boards</td>
<td>![Production]</td>
<td>These are display boards that indicate current conditions on production lines. Data shown on these boards include production results, operating conditions, and causes for line stops.</td>
</tr>
<tr>
<td>8</td>
<td>Standard operation charts</td>
<td>![Standard]</td>
<td>We use these charts to find the work methods that use the best combination of people, machines, and materials. One of these charts should be on display at each line in the factory.</td>
</tr>
<tr>
<td>9</td>
<td>Defective item displays</td>
<td>![Defective]</td>
<td>Set-up at workshops where defects have occurred, these displays exhibit defective items along with graphic data urging workers not to allow the same defects to recur.</td>
</tr>
<tr>
<td>10</td>
<td>Error prevention</td>
<td>![Error]</td>
<td>Error prevention boards help promote independent management to reduce human errors.</td>
</tr>
</tbody>
</table>
occurs at a certain process, andon (alarm lamps) will alert the supervisors to the problem immediately.

6. Kanban

Kanban are an administrative tool that helps maintain the “pull” system and Just-In-Time production. The two main types are transport kanban, which are withdrawn whenever in-process inventory is withdrawn, and production kanban, which provide operation instructions at various processes.

7. Production management board

These boards show the current production line conditions. Besides showing estimated and actual output results, they indicate causes for line stops and various operation-related data. This keeps the line leaders constantly informed of the line’s pace relative to estimated output. In other words, they always know if their line is going too fast or too slow.

8. Standard operation chart

Standard operation charts help us create easy-to-read graphical representations of process layouts, work procedures, and the like. In a sense, they serve as guide maps for those who prefer illustrations over descriptions.

Standard operation charts are rarely used by themselves. Usually, they are used with “standard operation combination charts,” which help us find the most efficient combination of people, machines, and materials.

9. Defective item display

Quality control statisticians use Pareto diagrams to illustrate data on defective items and defect causes. Most factory workers, however, find it difficult to read Pareto charts. Defective item displays solve this problem by exhibiting actual defective items along with the Pareto diagram or other charts describing defect trends. (See Figure 9.2.)
10. Error prevention board

Instead of remembering that “to err is human” and shrugging it off as inevitable, we can utilize error prevention boards to keep us more aware of our past errors so that we are less likely to repeat them. As such, error prevention boards are a tool for independent management. (See Figure 9.3.)

These boards usually have the hours of the day on the vertical axis and the days of the month on the horizontal
axis. When workers receive feedback on defects or human errors from the next process, they mark the error prevention board under the hour and day when the defect occurred. They use one of three symbols to describe the type of defect or error: A circle indicates an error that does not cause an abnormality, an “X” indicates an error that does cause an abnormality, and a triangle serves as a caution symbol. At regular meetings, workshop leaders and workers review their errors and compare them to error prevention board results from previous months.

Case Study: Visual Orderliness (Seiton)

In Chapter 4 of this manual, we provided a detailed description of 5S-related visual control tools, such as the red tag strategy and the signboard strategy. Now we will examine a case study of how “Visual orderliness” (seiton) tools have been put to work.

First, let us reaffirm that orderliness means “standardizing where things go.” In this case, standardizing means “making it clear to everyone what is normal and what is abnormal.” With this in mind, let us see how well the 5S’s were established in a parts storage area of a household electronics factory. (See the photo in Figure 9.4.)

On a scale of one to 100, these shelves rank about 25 for orderliness. Points were taken off for several reasons:

Reason 1: The shelves include place indicators, but no address indicators. What do the boxes’ vertical arrangement signify? Their horizontal arrangement?
 Penalty: 15 points.
Reason 2: The boxes have item indicators but the shelves do not. How do people know where boxes should go on the shelves?
 Penalty: 15 points.
Reason 3: The boxes give no indication of volume contained. Penalty: 15 points.

Reason 4: There is not enough space above the boxes for us to easily see what is inside them. Perhaps the boxes are bigger than they need to be. Penalty: 10 points.

Reason 5: The most serious reason is that the boxes can only be identified by the person who stocked them. This invites misplaced and lost items. It marks the beginning of the end of 5S conditions. Penalty: 20 points.

Thus, by looking critically at the parts shelves and evaluating them based on the 5S’s, we can more easily see where improvement needs exist.

Figure 9.5 shows a group of parts shelves at an automobile assembly plant. Let us compare these shelves with those shown in Figure 9.4 and note their differences.
Difference 1: The shelves at the auto plant are lower and thus accessible to shorter workers. Since the household electronics assembly plant hires more female workers than the auto plant, one would think it should have the lower parts shelves.

Difference 2: The parts boxes at the auto plant are smaller. This indicates that the turnover of parts boxes on the shelves is probably more frequent at the auto plant than at the household electronics plant.

Difference 3: The auto plant’s shelves clearly show where each box goes, making them much easier to use than the other plant’s shelves.

Difference 4: The location indicator signs at the auto plant are within the space marked off by white line demarcators, but they stick out beyond this boundary at the household electronics plant, which can be dangerous when tall items are being moved alongside the shelves.

Difference 5: Unlike at the household electronics plant, the parts boxes at the auto plant are easy to look into.

Difference 6: The biggest difference lies in how items are placed onto and retrieved from the shelves. At the auto plant, workers go to one side of the shelves to stock boxes and the other side to retrieve them. This results in parts being used in FIFO (First In, First Out) order.
The arrangement of shelves at the household electronics plant does not allow for FIFO stocking.

At first glance, one would not notice such differences between the two sets of shelves in the photos. After looking at them from the perspective of the 5S's, however, it is obvious that the auto plant's shelves are much more orderly than the household electronics plant's. With practice, we should all be able to make equally revealing evaluations at our own factories.

Standing Signboards

Kaizen Boards

Improvements tell the history of the factory and must keep pace with fast-changing market needs. Once we make an improvement, however, we begin to forget how conditions were before. It would be helpful indeed to keep track of improvements, so we can see how some improvements lead to other ones.

Figure 9.6 is a *kaizen* board that contains an “improvement results chart.” Charts such as these can provide before and after displays for each improvement. By the way, it helps to take before and after photographs of the workshop from exactly the same camera position. Another way to enhance visibility is to choose a different “improvement color” each year and paint each improved workshop area using the improvement color designated for the year.

It is also good to include information such as improvement expenses and improvement descriptions in the displays.

Process Display Standing Signboards

Signboards are needed not only to show where things go, but also to describe machines and other equipment and show which processes are contained in processing and assembly lines.
Figure 9.7 depicts a signboard that describes the processes in a VCR assembly line. The signboards are posted alongside andon that alert supervisors to parts supply problems. In this case, the signboards serve a basic function in helping to ensure a smooth supply of parts to the assembly line with minimal errors or waste.
Andon: Illuminating Problems in the Factory

Workshop leaders must be kept abreast of how smoothly things are going in their workshops. The sooner they can be informed of abnormalities or other problems in their workshops, the sooner they can analyze the situation and correct it.

Andon (alarm lamps) make a useful tool for alerting workshop leaders and other supervisors to problems on the factory floor. The purpose of lamps in general is to shed light on dark areas. Andon are special lamps that illuminate problems in the factory.

Basically, there are four types of andon: “paging andon” that light up when supplies of parts are needed, “emergency andon” that notify supervisors of abnormalities, “operation andon” that indicate the equipment’s operation status, and “progress andon” that confirm the progress of operations. (See Figure 9.8.)
Paging Andon

Paging *andon* are often used to request supplies of parts for the production line. When parts are about to run out at a process, the operator sends out a signal that lights the *andon*. This notifies the people who operate the parts supply system. In Japan, the parts suppliers’ quick movement around the factory in collecting and supplying parts has earned them the nickname “mizusumashi” or whirligig beetle.

Actually, there are two types of “whirligig beetle” techniques. One is the “hire” method, in which a group of *andon* page the carts used for supplying parts. The other technique is the “taxi” method in which dispersed *andon* page the carts.

Figure 9.9 illustrates the “hire” method for paging *andon*. In this case, the *andon* operate as follows:

Step 1: Operator confirms the shortage of parts and presses parts request button.
Step 2: The paging *andon* lights up.
Step 3: The parts supply cart operator (whirligig beetle) goes to the process where the parts request was issued.
Step 4: The parts supply cart operator takes the processes' empty pallets to the empty pallet storage area.
Step 5: The parts supply cart operator supplies the requested parts.
Step 6: The parts supply cart operator switches off the parts request button.

Warning Andon

Warning *andon* are mainly used on assembly lines and may differ depending upon the length of the line.

On short assembly lines, people tend to use “airplane andon.” Like the flight attendant call buttons on passenger seats in commercial airplanes, each process in the assembly line has an emergency call button. When one of these buttons is pressed, the andon board for the assembly line lights up and shows which process’s button was pressed. (See Figure 9.10.)

The following is a step-by-step description of how “airplane andon” are used.

Figure 9.9 The “Hire” Method for Using Paging Andon.

Step 4: The parts supply cart operator takes the processes' empty pallets to the empty pallet storage area.
Step 5: The parts supply cart operator supplies the requested parts.
Step 6: The parts supply cart operator switches off the parts request button.
Step 1: When a line operator gets behind due to parts shortages, defects, machine trouble, or whatever, he or she presses the “call button” (which lights up a yellow andon lamp).

Step 2: If the line is equipped with human automation devices for automatic stopping, the operators continue working for the time being. If it is not so equipped, a line operator must press the line stop button to stop the line, at which point a red andon lamp goes on.

Step 3: A workshop leader and/or a parts supply cart operator comes immediately to find out what the problem is, resolve it, and turn off the andon lamps.

The above type of warning andon configuration works well enough when the assembly line is short enough so that all of the andon, processes, and operators can be seen from one place. Longer lines, however, make it impossible to see the whole line and all of its operators. In this case, the andon are lined up in a centralized board (as in the “hire” method described earlier), as shown in Figure 9.11. These andon are used in three ways:
1. When line A is operating normally, the name “Line A” is lit up on the andon board.
2. When an abnormality occurs, an operator presses a call button, at which time the process number where the call was issued lights up on the andon board (usually a yellow lamp).
3. Once a warning call button is pressed, if the line is equipped with a device that automatically stops the line at a certain point, the line will continue until that point is reached or until the problem is resolved (whichever comes first). If the line is stopped, the yellow andon indicating the process number goes out and is replaced by a red andon that also indicates the process number.

Operation Andon

Operation andon indicate machine operating statuses. When the machine has been stopped, the operation andon shows the reason for the stoppage. (See Figure 9.12.)

Operation andon can be used as follows:

1. The green “IN OPERATION” lamp is lit whenever the machines are operating normally.
2. The yellow “CALL” lamp is lit when an emergency call button has been pressed.
3. A red lamp (“BREAKDOWN,” “BLADE CHANGE,” or “WIDTH ADJUST”) is lit when a corresponding button has been pressed.
4. The red “CYCLE TIME OVER” lamp is lit when one of the cycle time pacemakers installed in the equipment indicates the cycle time has been exceeded.

Progress Andon

Many assembly lines have short pitch times, such as 1- or 2-minute tact intervals. When a line has such a short tact time, the progress of operations is easy to observe simply by monitoring the rhythm.

It is more difficult to sense delays in lines that have longer tact times, such as 10 or 20 minutes. Progress *andon* enable line operators to gauge the progress of their own operations. (See Figure 9.13.)

Figure 9.12 Operation *Andon*.

Figure 9.13 Progress *Andon* in Manual-Conveyance Assembly Lines.
Most progress andon are divided into 10 equal sections, but the main idea is to have the various stages of the operations correspond in a level manner to the various andon sections.

In the case of conveyor lines, limit switches can detect when the progress stage number on the progress andon board has changed. In lines where workpieces are passed by hand, a timer is used instead.

Production Management Boards: At-a-Glance Supervision

Many factories rush feverishly into production based on the production schedule and resort to overtime hours if it turns out they cannot keep up with the scheduled output. To help avoid such unpleasant surprises, it would be nice to know from one hour to the next just how the line is doing, whether it is too slow (and why), and what countermeasures to take under various circumstances.

Production management boards serve exactly this purpose.

Production management boards should be simple in design and should emphasize providing information that answers the following key questions:

- How do current results compare to estimated results?
- Why was the line stopped the last time?
- What kind of improvement is needed?
- Will there be any spillover into overtime or tomorrow’s schedule?

The factories that already have production management boards tend to post them only in factory managers’ offices. However, they do very little good when only the managers can keep an eye on them.

The people on the factory floor—the workshop leaders and equipment operators—have the greatest need to have
production management boards to keep them informed. It is a good idea to have a production management board posted as “the final process” in the line, so that everyone checks it at least once per production cycle. Nothing works better to keep workshop leaders and operators aware of current conditions in their workshops and conscious of problems and their solutions.

Most production management boards look something like the example shown in Figure 9.14.

Figure 9.14 Production Management Board.

...production management boards to keep them informed. It is a good idea to have a production management board posted as “the final process” in the line, so that everyone checks it at least once per production cycle. Nothing works better to keep workshop leaders and operators aware of current conditions in their workshops and conscious of problems and their solutions.

Most production management boards look something like the example shown in Figure 9.14.

Relationship between Visual Control and Kaizen

This topic reminds me of a visit I once paid to a European automobile assembly plant. While touring the plant, I noticed a large and fancy *andon* hanging from the ceiling at the final process in the assembly line. They must have spent a lot of money to buy and install that *andon*, much more than any Japanese manufacturer would have spent. I also noticed, however, that it never seemed to light up at all.
Curious, I asked the factory’s chief production engineer why the *andon* was not lit.

He said that when the company managers went to visit some factories in Japan, they were very impressed with the *andon* there and decided to adopt the tool in their own factory. Once the *andon* was installed, the line workers soon found that no one ever came to the rescue when they pressed the “call” buttons, and so the problems that prompted them to call for help did not get resolved. In fact, the only change the *andon* made was to create the wasted motion involved in pressing the call buttons!

Within a month of the *andon’s* arrival, the workers stopped pressing the call buttons, and eventually it was decided just to unplug the *andon* to save electricity costs.

Nonsensical as it sounds, this case was not an isolated oddity. Similar episodes have occurred in America and even in Japan.

All too often, people have casually adopted the external trappings of JIT production, such as the various JIT tools and techniques, without committing themselves to learning the concepts and spirit of JIT. The results of such misguided approaches include wastebaskets full of *kanban*, completely baffling standard operations that lack any trace of rationale, and decorative *andon* that hang from the ceiling like ill-conceived chandeliers.

No matter how many visual control tools we bring into the factory, if we do not use them correctly to discover and promptly correct abnormalities, the tools are no more valuable than money that is always kept under a mattress.

If we can make abnormalities obvious and perform prompt analyses of their causes, we can expect to make improvements based on such discoveries and analyses at least half of the time.

Figure 9.15 shows the roles that various visual control tools can play in the improvement cycle. Let us remember that *just introducing visual control tools will not automatically result*
in improvements. Visual control tools only do one-third of the job—they help make abnormalities obvious and therefore easier to discover. The other two-thirds—analyzing the abnormality and taking corrective action—still must be done by the factory people themselves.

Visual control is meaningless unless we look at it from the larger perspective of the improvement cycle.
Index

1973 oil crisis, 8
3 Mu’s, 643
 eliminating, 151
5 Whys and 1 How, 24, 128, 129, 130–134
 waste discovery by, 208–210
5MQS waste, 152–153
 conveyor waste, 155–156
 disaster prevention measures waste, 159
 large machines waste, 154–155
 materials waste, 157
 parts waste, 157
 searching waste, 154
 shish-kabob production waste, 158
 walking waste, 153–154
 waste in air-processing machines, 156–157
 waste in defective goods production, 159
 waste in meetings, 158
 watching waste, 154
 workpiece motion waste, 158–159
5S approach, xii, 230, 237–238, 455, 689, 721
 as bridge to other improvements, 264
 as prerequisite for flow production, 344
 benefits, 238–243
 changeover 5S checklist, 512
 for factory improvement, 15–17
 in changeover procedure improvement, 502
 keys to success, 262–264
 meaning, 243–249, 250
 orderliness applied to jigs and tools, 307–319
 red tag strategy for visual control, 268–293
 red tags and signboards, 265–268
 role in changeover improvement, 533
 seiketsu (cleaned up), 246–247
 seiri (proper arrangement), 243–245
 seiso (cleanliness), 246
 seiton (orderliness), 245–246
 shitsuke (discipline), 247–249
 signboard strategy for visual orderliness, 293–306
 visible 5Ss, 249–262
5S badges, 255, 257
5S checklists, 258, 259
 for changeover, 818–819
5S contests, 258
5S implementation memo, case study, 286
5S maps, 261–262
5S memos, 755–757
5S mini motto boards, 255, 257
5S patrol score sheet, 258–259, 260
5S photo exhibit, 260
5S radar chart, 754
5S stickers, 257, 258
5S-related forms, 747
 5S checklists for factories, 747–749
 5S checklists for offices, 753
 5S checklists for workshops, 750–752
 5S memos, 755–757
 5S radar chart, 764
 cleaning checklist, 768–770
 display boards, 775–776
 five-point checklist to assess cleaned-up
 status, 771–774
 lists of unneeded inventory and equipment,
 764–767
 red tag campaign reports, 761–763
 red tags, 758–760
5W1H Sheet, 131, 744–746
 and on-site experience, 233, 235
 first Why guidelines, 233
 follow-up after line stops, 234
 three 5W1H essentials, 233
 waste prevention with, 232–233
7 Ms plus E&I, 551, 552

A

A-B control, 676, 677
Acceptable Quality Level (AQL), 121, 122
Accident-prevention devices, 698
 poka-yoke, 699–709
Accidents
 plywood gluing process, 696
 reasons for, 685–687
Actual work environment. See On-site experience
Added-value work, 75
Address signboards, 299
Adjustment errors, 560
Adjustment waste, 510
Administrative waste, 173
 and clerical standardization, 229
disposal case study, 291
After-sales service part requests, 162
Air-processing machines, waste in, 156–157
Airplane andon, 466
Alerts, 672
Aluminum casting deburring operation,
 operations analysis table, 192
Amplifier-equipped proximity switches, 578
Andon systems, xiii, 11, 129, 231, 676, 679,
 680, 682
 hire method for using, 465–466
 illuminating factory problems with, 464
 operation andon, 468–469
 paging andon, 465–466
 progress andon, 469–470
types of, 465
 warning andon, 466–468
waste prevention using, 232
Anticipatory buying, 162
Anticipatory large lot production, 286–287
Anticipatory manufacturing, 162
Apparent minor defects, 680
Appropriate inventory, 96
Arm motions, 220–221
Arrow diagrams, 187–188, 211, 347, 730
 applications, 730
 examples, 731–732
 printed circuit board assembly shop, 189
tutorial, 187–190
ASEAN countries, xi
Assembly line
 applying jidoka to, 660
 extending jidoka to, 676–682
 jidoka o prevent oversights in parts
 assembly, 680–681
 stopping at preset position, 69, 678–680
Assembly method error, 678
Assembly parts, exchange of, 499
Assembly processes
 changeover example, 495
 changing to meet client needs, 20
 establishing specialized lines for, 371–373
 kanban in, 447–448, 448
 management of, 81
 manpower reduction example, 428
 multi-process operations in, 363
 standing while working in, 355–359
 warning andon for long, 468
 warning andon for short, 467
Assembly step omission, 592
Attitude adjustment, 143–144
Auditory control, 120, 231
 waste prevention with, 230–232
Auto feed time, 635
Auto parts machining line, 400
Auto-extract devices, 657
Auto-input devices, 657
Automatic shut-off, 672
Automation, 102–103, 111
 limitations of, 79
 reinforcement of waste by, 111
 vs. jidoka (human automation), 656,
 657–658
Automobile assembly plant, parts shelves,
 460, 461
Awareness revolution, 103, 104, 105, 159,
 176, 199, 344, 641, 721
 as premise for JIT production, 46, 344
 as prerequisite for factory improvement,
 13–15

B
Back-door approach, to waste discovery,
 181–183
Back-to-the-source inspection, 168, 170–172
Backsliding, 229
Basic Spirit principles, 203, 204
Baton touch zone method, 359, 368, 491, 492
Bills of materials, 81, 83
Blade exchange, 498
Board insertion errors, 594
Body movement principles, 220–221, 220–223
Body, as main perceptive instrument, 134
Bolt removal, eliminating need for, 521, 536
Bolt tightening reductions, 520
Boltless approach, 535
Boltless die exchange, 523
Bolts
 as enemies, 509, 535
 making shorter, 535
Bottlenecks, 364
Bottom-up improvements, 134–139
Bracket attachment errors, 603
Brainstorming, 208
 factory problems as opportunities for, 208
Breakdowns
 for standard operations charts, 638
 reducing through 5Ss, 241
Bridge defects, 598
Brush omission errors, 609
Buyer’s market, 18
Bypass method, as leveling technique,
 491–492

Capacity imbalances, 161–162
 between processes, 214–215
 overcoming through 5Ss, 239
 retention and, 161–162
Capacity leveling, 21
Capacity requirements planning (CRP), 442
Capacity utilization rates, 68, 331, 341, 684
 and variety of product models, 504
Capacity-load imbalances, 151
Capital procurement, 93
Caravan style operations, 407, 423
Case studies
 drilling machine worker separation,
 669–672
 factory revolution, 287–289
 red tag strategy at Company S, 285–289
Cash-convertible assets, 93
Caster strategy, 349–350, 420. See also
 Movable machines
Chair-free operations, 19
Change, resistance to, 40, 201
Changeover 5S checklist, 512
Changeover costs, 73
 component costs, 73, 74
 variation in, 597
Changeover improvement list, 505, 810–811
 time graph analysis, 513
Changeover improvement procedures,
 500–502
 applying 5Ss to eliminate waste, 502
 changeover improvement list, 505
 changeover kaizen teams for, 503–506
 changeover operations analysis, 501–502,
 506–508
 changeover operations analysis charge,
 508
 changeover results table, 507
 eliminating waste with 5Ss, 508–511
 external changeover procedures, 501
 identifying wasteful operations, 508–511
 improving external changeover, 502
 improving internal changeover, 502
 injection molding process case study,
 515–517
 internal changeover procedures, 500
 kaizen team, 501
 public changeover timetable, 505
 transforming internal changeover to
 external changeover, 502
 waste, 501
Changeover improvement rules, 532–533
 role of 5Ss, 533–534
Changeover kaizen teams, 501, 503–506
Changeover operations, 71, 347, 723
 adjustment waste in, 510
 and introduction of synchronization, 373
 approach to changeover times, 499–500
 assembly line improvement example, 495
 avoidance of, and retention, 162
 balancing costs with inventory
 maintenance costs, 72
 changing standard parameters, 499
 exchange of dies and blades, 498
 exchanging assembly parts, 499
 external changeover time, 500
 general set-up, 499
 in JIT production system, 11
 internal changeover time, 500
 minimizing number, 216
 procedures for improvement, 500–532
 production leveling strategies for, 494–495
 rationale for improvement, 497–498
 reducing through 5Ss, 242
 replacement waste in, 509–510
 seven rules for improving, 532–539
 shortening time for, 494
 standardizing, 538–539
 time-consuming nature of, 216, 219
types of, 498–499
within cycle time, 514
Changeover operations analysis, 501–502,
506–508, 535
chart, 508
Changeover results table, 507, 815–817
Changeover standards, standardizing, 537
Changeover times, 499–500
Changeover work procedure analysis charts,
812–814
Checking, 691
Cleaned up checklist, detail, 256
Cleaned up, visibly, 253
Cleaning checklist, 768–770
Cleanliness, 16, 246, 690–691
five-point checklist, 772
of machinery, 119
visible, 253
Cleanliness check cards, 692
Cleanliness control board, 691
Cleanliness inspection checklist, 254, 690, 692
Cleanliness, Checking, and Oiling (CCO),
689–693
training in, 708
Clean-up, 16, 246–247
Cleanup waste, in external changeover procedures, 511
Clerical standardization, 229
Client needs, as determinant of capacity, 22
Client orders, as basis for cycle time/pitch, 70
Color coding, 253
for maintenance, 693
for oil containers, 319
in changeover improvements, 534
in kaizen boards, 462
Color mark sensors, 574, 580
applications, 582
Combination charts, 224
clarifying human work vs. machine work with, 664
for standard operations, 223–226
steps in creating, 630–632
wood products manufacturer example, 226, 227
Communication
about 5S approach, 263
errors in, and defects, 555–556, 558
Compact equipment, 19, 117–118, 340–341,
427, 484
as condition for flow production,
340–341, 342
building flexibility through, 419
compact shotblaster, 354
compact washing unit, 356
cost savings from, 354
diecast factory case study, 375–376, 377
for multi-process operations, 398–399
separating human and machine work with, 431
Company cop-out, 107, 108
Company-wide efficiency, 68
Company-wide involvement, with 5S approach, 262
Complexity
and waste, 648
in moving parts, 694
Component efficiency, 66
Computer-based management, 81
Computerization
and waste, 83
expendable material created by, 157
waste-making, 81
Computers
failure to shorten physical lead-time, 5
red tagging, 278–281
Confirmed production schedule, 439
Constant demand, products vs. parts, 475–476
Contact devices, 570
differential transformers, 572
limit switches, 570
microswitches, 570
Container organization, for deliveries, 385
Continuous flow production time, 19
Continuous improvement, 211
Control devices, 567
Control standardization, 228
Control/management waste, 149
Conveyance liveliness index, 304
Conveyance waste, 69, 149, 163–166, 173,
176, 180, 187, 336, 355–356, 392
links to retention, 164
Conveyor systems
appropriate use of, 70–71
improving equipment layout to eliminate, 79
waste hidden in, 67
Conveyor use index, 137
Conveyor waste, 155–156
Cooperative operation confirmation chart,
788–790
Cooperative operations, 367–371, 419
improvement steps for, 369
labor cost reduction through, 427–430
Index

D

> Deburring omissions, 589
> Defect identification, 546
> and causes of defects, 558–561
> and factors behind defects, 550–558
> defects as people-made catastrophes, 546–547
> inspection misunderstandings, 547–550
> Defect prevention, 168, 177
> assembly step omission, 592
> board insertion errors, 594
> bracket attachment errors, 603
> bridge defects, 598
> brush omission errors, 609
> deburring omissions, 589
> defective-nondefective part mixing errors, 613
> drilling defects, 600, 675–676
> E-ring omission errors, 611
> equipment improvements for, 640
> gear assembly errors, 614
> grinding process omission, 591
> hole count errors, 588
> hole drilling omission, 593
> hose cut length variations, 597
> incorrect drill position, 601
> left-right attachment errors, 615
> mold burr defects, 674–675
> nameplate omission errors, 608
> packing omission errors, 610
> part omission errors, 607
> pin dimension errors, 595
> press die alignment errors, 596
> product set-up errors, 602
> spindle hole punch process omission, 590
> tap processing errors, 606
> tapping operations, 673–674
> through 5Ss, 241
> through automatic machine detection, 403
> through jidoka
> through simplified production operations, 549
> torque tightening errors, 599
> with kanban, 441–442
> with multi-process operations, 392
> workpiece direction errors, 605
> workpiece positioning errors, 605
> wrong part assembly errors, 612

Defect production waste, 176–177, 180

placing parts in front of workers for, 370
VCR assembly line example, 429
Cooperative operations zones, 370–371
Coordinated work, waste in, 67
Corporate balance sheet, inventory in, 94
Corporate culture, 15
Corporate survival, xii
Corrective maintenance, 688
Cost reduction, 69–71
and effort invested, 71–74
and profit, 36
resistance arguments, 200–201
through 5Ss, 239
through jidoka, 659
Cost, in PQCDS approach, 3
Cost-up method, 35
Countable products, 119
Craft unions, vs. enterprise unions, 393–394
Crane operations, safety poka-yoke, 706
Cube improvements, 27
Current assets, 93
Current conditions, analysis to discover waste, 185–198
Current liabilities, 94
Current operating conditions, 24
Customer complaints, vs. defects, 547–548
Customer lead-time, 99
Customer needs, loss of concern for, 113–114
Customers, role in efficiency improvement, 62–65
Cutting tools
layout, 317
orderliness applied to, 316–319
placement, 317
storage, 318
types of, 317
Cycle list method, 487–489
reserved seats and, 489–490
Cycle tables, 485
Cycle time, 19, 22, 332, 337, 363, 433, 630, 634, 637, 647. See also Pitch and production leveling, 421–422
and standard operations, 625
as leveling technique, 485–487
calculating, 487
completing operations within, 636
factors determining, 70
for standard operations charts, 637
overproduction and, 677
smaller equipment for maintaining, 398
ts. speed, 116

E
Defect reduction, 168, 544
 with compact machinery, 399
Defect signals, 567
Defect-prevention devices, 659, 669, 673
Defective assembly parts, 678
Defective item display, 457, 458
Defective products
 and inventory, 92
 counting, 119
 ending downstream processing of, 544–545
 factories shipping, 542
 increases with shish-kabob production, 158
 increasing inspectors to avoid, 542–544
 inventory and, 90–91
 noncreation of, 545–546
 waste in making, 159
Defective/nondefective part mixing errors, 613
Defects
 and communication errors, 555–556, 557, 558
 and inspection, 548
 and production method errors, 555, 557
 and surplus products, 549
 as human-caused catastrophes, 546–547
 causes, 558–561
 due to human errors, 551, 553, 557, 558
 due to machine errors, 554–555, 557
 factors behind, 550–558
 in materials, 553–554, 557
 relationship with errors and inspection, 543
 stoppages for, 567
 ten worst causes, 561
vs. customer complaints, 547–548
Delays, reducing through 5Ss, 242
Delivery
 and loading methods, 379
 and transport routes, 380–382
 and visible organization of containers, 385
 applying flow concept to, 378–382
 color coding strategy, 384
 FIFO strategy, 384–385
 frequency of, 380
 in PQCDs approach, 3
 self-management by delivery companies, 383
Delivery company evaluation table, 382, 791–793
Delivery schedules, shortening of, 2
Delivery sites
 applying flow concepts to, 382–385
 establishment of, 383
 product-specific, 384
 detach movement, automation of, 671–672, 673
Deterioration, 686
 and accidents, 685
 preventive measures, 688
 reversing, 688
Die exchange, 498
 improvement for boltless, 523
 minimizing, 497
Die height standardization, 526–527
Die storage sites, proper arrangement and orderliness applied to, 530–531
Diecast deburring line, 351
Diecast factory, flow production case study, 373–378
Differential transformers, 572
Dimensional tolerances, 686
Dimensions, enlarging, 311
Disaster prevention measures, waste in, 159
Discipline, 16, 247–249
 JIT improvements as, 130
 visible, 254–255
Displacement sensors, 574
 applications, 579–580
Display boards, 775–776
Distribution, applying JIT to, 47
Diversification, 2, 117, 415, 416
 of consumer needs, 62
 through 5Ss, 242
Do it now attitude, 236
Doing, as heart of JIT improvement, 133
Dot it now attitude, 236
Double-feed sensors, 576
 applications, 584
Downstream process control inspection method, 169, 170
Drill bit replacement, external changeover improvement, 532, 533
Drill bit storage method, improvements, 235
Drill operation, before improvement, 670
Drill position errors, 601
Drilling defects, 600
 avoiding downstream passing of, 675–676
Drilling machine, 662
 detach movement, 671–672
 hold motion automation, 671
jidoka case study, 669–672
safety plate for, 703, 704
separating human from machine work on, 402

E

E-ring omission errors, 611
Economical lot sizes, 72
Economy of motion, 642
Economy of scale, 45
Efficiency
 and production leveling, 69
 approaches to, 59–61
 customer as driver of, 62
 estimated vs. true, 59–61
 individual and overall, 66–69
 maximizing at specific processes, 484
 overall, 484, 492
 raising in individual processes, 68
 shish-kabob vs. level production
 approaches, 484, 486
Electric screwdrivers, combining, 315
Emergency andon, 464
Employees, as basic asset, 108
End-of-month rush, 162
Energy waste
 due to inventory, 325
 through inventory, 91
Engineering technologies, applying JIT improvement to, 334
Engineering-related forms, 777
 5S checklist for changeover, 818–819
 changeover improvement lists, 810–811
 changeover results tables, 815–817
 changeover work procedure analysis charts, 812–814
 cooperative operation confirmation chart, 788–790
 delivery company evaluation charts, 791–793
 JIT delivery efficiency list, 794–796
 line balance analysis charts, 785–787
 model and operating rate trend charts, 805–807
 multiple skills evaluation chart, 799–801
 multiple skills training schedule, 797–798
 P-Q analysis lists/charts, 777–781
 parts-production capacity work table, 822–824
 poka-yoke/zero defects checklist, 820–821
 process route diagrams, 782
 production management boards, 802–804
 public changeover timetables, 808–809
 standard operations combination chart, 825–826
 standard operations form, 831–833
 summary table of standard operations, 827–828
 work methods table, 829–830
Enterprise unions, vs. craft unions, 393–394
Enthusiasm, as prerequisite for innovation, 143, 144
Equal-sign manufacturing cells, 362
Equipment
 applying jidoka to, 660
 automation and human automation, 102–103
 compact, 19, 117–118
 ease of maintenance, 119
 ease of operation, 118
 ergonomics recommendations, 222
 for flow production, 389
 improvements facilitating standard operations, 640
 modification for multi-process operations, 406
 movability, 64–65, 117–118
 obtaining information from, 119–120
 shish-kabob vs. flow production
 approaches, 331
 standardization in Japanese factories, 395
 versatility and specialization, 116–117
 vs. work operations improvements, 103–108
Equipment breakdown, 708
 acceptance of, 683
 apparent minor defects, 680
 below-expectation performance, 686
 breakdown stage, 686
 intermittent stoppage stage, 686
 latent minor defects stage, 680
 preventing, 693–695
 stages, 685, 687
Equipment constitution, 694
Equipment costs
 and jidoka, 666
 vs. labor costs, 658
Equipment improvement, 103, 104, 106
 and company cop-out, 108
 based on manufacturing flow, 114–120
cost of, 104, 109–111
irreversibility of, 112, 113–114
not spending money on, 207–208
reinforcement of waste by, 111–112
twelve conditions for, 114–120
typical problems, 108–114
Equipment improvement problems, 110
Equipment layout
applying jidoka to, 662
as condition for flow production, 336–337, 342
for flow production, 389
in order of processing, 353–355
shish-kabob vs. flow production approaches, 350
Equipment signboards, 295
Equipment simplification, 400
Equipment waste, 149
Error control, 567
Error prevention boards, 457, 458
Errors, relationships with defects and inspection, 543
Estimate-based leveling, 23
Estimated efficiency, 59–61
Estimated lead-time, 98–99
Estimated production schedule, 439
Estimated quality, 122
Excess capacity, 174
Excuses, 202, 205
Expensive improvements, failure of, 206
Experiential wisdom, 210–211
External changeover improvements, 529–532
carts reserved for changeover, 531–532
drill bit replacement example, 532
proper arrangement and orderliness in die storage sites, 530–531
External changeover procedures, 501
cleanup waste in, 511
improving, 502
preparation waste in, 510
waste in, 510–511
External changeover time, 500

F

Factory
as best teacher of improvements, 134–139
as living organism, 230
Factory bath, 270
Factory graveyards, 73
Factory improvement
5Ss for, 15–17
awareness revolution prerequisite, 13–15
shortening physical lead-times through, 6
vs. JIT improvements, 13
Factory layout diagram, 188
Factory myths
anti-JIT production arguments, 40–44
fixed ideas and JIT production approach, 44–47
sales price/cost/profit relations, 35–40
Factory problems, 326
as brainstorming opportunity, 208
illuminating with andon, 464
stopgap responses to, 150
ubiquitousness of, 251
Factory revolution, 287–289
Factory-based innovation, xiii, 133
Factory-wide efficiency, 68
Feed motion, 664
applying jidoka to, 665
jidoka, 670, 671
Feet, effective use of, 221–222, 223
Fiber optic switches, 575, 579
Finance, inventory and, 92–95
Fine-tuning waste, 537
removal, 523–527
Fingernail clipping debris, device preventing, 247
First-in/First-Out (FIFO), 302–303, 461, 462
as delivery strategy, 384–385
Five levels of quality assurance achievement, 542–546
Five whys, 24, 130–134, 183, 184, 210, 236
applying to changeover improvements, 555
waste discovery through, 208–210
Five-point checklist, 771
for cleanliness, 772
for proper arrangement, 772
Five-point cleaned up checklist, 255, 257–258, 773, 774
Fixed ideas, 235
about conveyors, 156
avoiding for waste prevention, 235–236
direct challenge to, 43
eliminating for waste removal, 204
kanban, 447
large lot production, 417
wall of, 210
Fixed liabilities, 94
Flexibility
 in baton touch zone method, 491
 mental origins of, 420
Flexible production, 419
Flexible staff assignment system, 63, 65, 417, 419
Flow analysis, 188
 summary chart, 189, 190
Flow components, 56
Flow control, 567
Flow devices, 108, 109
Flow manufacturing, xii, 9–10, 49, 64, 70, 79–84. See also One-piece flow
 and line improvements, 25
 making waste visible by, 17
 role in JIT introduction, 17–19
 seven requirements, 19
Flow of goods, 159–160, 641, 646
 device improvements facilitating, 638–640
Flow production, 50, 321, 564–565
 and evils of inventory, 324–328
 and inventory accumulation, 321–324
 applying to delivery sites, 382–385
 approach to processing, 329–330
 at diecast factory, 374, 376
 between factories, 332–333, 378–385
 caster strategy, 349–350
 defect prevention with, 721
 diecast factory case study, 373–378
 eight conditions for, 333–341
 equipment approach, 331
 equipment layout in, 330
 for production leveling, 492–494
 in medical equipment industry, 423
 in multi-process operations, 388
 in-process inventory approach, 331
 interrelationship of factors, 343
 lead time approach, 331
 operator approaches, 330–331
 preparation for, 344–350
 procedure for, 350–357
 rational production approach in, 330
 reducing labor cost through, 422–424
 sink cabinet factory example, 493
 steps in introducing, 343–373
 straight-line method, 340
 U-shaped manufacturing cell method, 340
 vs. shish-kabob production, 328–332
 waste elimination techniques, 341–342
 within-factory, 332–333, 333–341
Flow shop layout, 395
Flow unit improvement, 639
Forms, 711–714
 5S-related, 747–776
 engineering-related, 777–833
 for standard operations, 626–628
 JIT introduction-related, 834–850
 overall management, 716–729
 waste-related, 730–746
Free-floating assembly line, 356, 357
Full lot inspection, 120–122
Full parallel operations, 225
Full work system, 175, 365, 676–677
 A-B control, 677
 devices enabling, 368
 pull production using, 367
Function-specific inventory management, 305

G

Gear assembly errors, 614
General flow analysis charts, 733–734
General purpose machines, 331, 340
Golf ball kanban systems, 450–451
Graph time, 633
Gravity, vs. muscle power, 221
Grinding process omission, 591
Groove processing lifter, separating human/machine work, 649
Group Technology (GT) lines, 347
 for line balancing, 491

H

Hand delivery, 365
Hand-transferred one-piece flow, 337, 338
 pull production using, 366
Handles/knobs, 223
Hands-on improvements, 9, 140
Height adjustments, avoiding, 538
Hirano, Hiroyuki, xiii
Hold motion, automation of, 671
Hole count errors, 588
Hole drilling omission, 593
Horizontal development, 24–25, 391
Hose cut length variations, 597
Household electronics assembly, labor cost
 reduction example, 428
Human automation, 12, 62, 102–103, 159, 554, 655. See also Jidoka (human automation)
and removal of processed workpieces, 668
and setup of unprocessed workpieces/startup, 669
applying to feeding workpieces, 665
applying to return to starting positions, 667
for multi-process operations, 402
Human error waste, 173, 674
and defect prevention, 551–553
basic training to prevent, 562–563
defects and, 546–547
eliminating by multiple skills training, 563
minimizing, 177
Human movement
body movement principles, 220–223
removing wasteful, 217–223
Human work, 658
clarifying with combination charts, 664
compact PCB washer example, 431
procedure for separating from machines, 682–689
separating from machine work, 64, 118, 400–402, 406, 430–432, 640, 649–650, 660–662, 702, 703
Humanity, coexistence with productivity, 387–388

Idle time waste, 66, 67, 69, 156, 173, 178–179, 180, 682
cooperative operations as solution to, 367–371
Impact wrench, 680, 681
Implementation, 139–144
of multi-process operations, 405
Implementation rate, for waste removal, 205–206
Improvement
and enthusiasm, 143, 144
intensive, 266–268
making immediate, 538
poor man’s approach, 106
spending on, 284
spirit of, 43
with visual control systems, 453–454
Improvement days, weekly, 32
Improvement goals, 191
Improvement lists, 33–34
Improvement meetings, 32–33, 33
Improvement promotion office, 31–32
Improvement results chart, 462, 844–845
Improvement teams, 31, 32
Improvements
bottom-up vs. top-down, 134–139
factory as best teacher, 134–139
implementing, 24
mental vs. physical, 130–134
passion for, 143–144
promoting, 126–130
pseudo, 126–130
Improving actions, 220
In Time concept, 48
In-factory kanban, 443, 444–445
In-line layout, 364, 376
compact shotblaster for, 377
washing units, 365
In-process inventory, 101, 102, 161, 175, 447, 484
and standard operations, 625–626
for standard operations charts, 637
production kanban for, 445
reduction of, 647, 649
relationship to kanban, 435
shish-kabob vs. flow production approaches, 331
symbols for standard operations charts, 637
Inconsistency, 152, 643
eliminating, 151
Independent improvement, 688–689
Independent maintenance, 688–689
Independent process production, 53
inflexibility in, 54
Independent quality control inspection method, 169, 170
Individual efficiency, 66–69
Industrial engineering (IE), xii
and conveyor use index, 137
motion study in, 642
vs. JIT method, 136
Industrial fundamentalism, 105, 106
Industrial robots, 668
Inexpensive machines, versatility of, 117
Information inspection, 168, 169
Inherent waste, 79–84
Injection molding process
 burr defect prevention, 674
 internal changeover improvement case study, 515–517
Injuries
 reasons for, 695–697
 reducing through 5Ss, 241
Innovation
 and JIT production, 47–49
 enthusiasm as prerequisite for, 143
 factory-based, xiii
 in JIT production, 47–49
 JIT production as, 27
Inspection
 back-to-the-source inspection, 170–172
 eliminating need through jidoka, 674
 failure to add value, 168
 failure to eliminate defects, 120
 increasing to avoid defective products, 542–544
 information inspection, 169
 preventive, 564
 relationship to defects, 543, 547–550
 sorting inspection, 169
 Inspection buzzers, waste prevention with, 232
 Inspection functions
 building into JIT system, 119
 full lot inspection, 120–122
 sampling inspection, 120–122
 Inspection waste, 149
 Inspection-related waste, 167–168
 Integrated tool functions, 223
 Intensive improvement, 266–268
 timing, 268
 Interest payment burden, 324, 326
 inventory and, 90
 Intermittent stoppage stage, in equipment breakdown, 686
Internal changeover improvements, 518, 554–555
 bolt tightening reductions, 520
 boltless die exchange, 523
 die height standardization, 526–527
 eliminating need to remove bolts, 521
 eliminating nuts and washers, 521
 eliminating replacement waste, 518–523
 eliminating serial operations, 527–529
 establishing parallel operations, 528
 one-touch tool bit exchange, 522
 protruding jigs vs. manual position setting, 524
 removing fine-tuning waste, 523–527
 spacer blocks and need for manual dial positioning, 526
 spacer blocks and need for manual positioning, 524–525
 tool elimination, 519–520
Internal changeover procedures
 changing to external changeover, 511–518, 534
 improving, 500, 502
 PCB assembly plant case study, 513–514
 transforming to external, 502
 turning into external changeover, 511–518
 waste in, 509–510
 wire harness molding process case study, 517–518
Internal changeover time, 500
Inventory
 advance procurement requirements, 325
 and conveyance needs, 90
 and defects, 90–91, 92
 and energy waste, 91
 and finance, 92–95
 and interest-payment burden, 90
 and lead-time, 87–89, 88
 and losses due to hoarded surpluses, 325
 and materials/parts stocks, 91
 and price cutting losses, 325
 and ROI, 95
 and unnecessary management costs, 91
 as cause of wasteful operations, 325
 as evasion of problems, 176
 as false buffer, 95, 101
 as JIT consultant's best teacher, 89
 as opium of factory, 92–95
 as poor investment, 95–98
 breakdown by type, 161
 concealment of factory problems by, 91, 92, 326, 327
 evasion of problems with, 163
 evils of, 90–92, 324–328
 FIFO storage method, 303
 in corporate balance sheet, 94
 incursion of maintenance costs by, 325
 interest payment burden due to, 324
 management requirements, 325
 product, in-process, materials, 101, 102
 red tagging, 281–282
 reducing with once-a-day production scheduling, 480–481
shish-kabob vs. level production approaches, 484–485
space waste through, 90, 325
unbalanced, 161
wasteful energy consumption due to, 325
with shish-kabob production, 158
zero-based, 98–102
Inventory accumulation
and caravan operations, 322
and changeover resistance, 322
and distribution waits, 322
and end-of-month rushes, 323
and faulty production scheduling, 323
and just-in-case inventory, 323
and obsolete inventory flow, 321
and operator delays, 322
and resistance to change, 322
and seasonal adjustments, 323–324
and standards revision, 323
and unbalanced capacity, 322
multiple-process sources of, 322
reasons for, 321
Inventory assets, 715
Inventory control, 126
Inventory flow, obsolete, 321
Inventory graveyard, 324
Inventory liveliness index, 303–304
Inventory maintenance costs, 72
Inventory management
function-specific method, 305
product-specific method, 305
with kanban, 436
Inventory reduction, 87, 89, 125
case study, 288, 289, 377
Inventory stacks, 303
Inventory waste, 175–176, 180
Irrationality, 152, 643
eliminating, 151
Item characteristics method, 568, 569
Item names, for signboards, 299–300
Ivory tower syndrome, 22

J

Japanese industrial structure, 1980s
transformation of, xi
Jidoka (human automation), 12, 62, 102–103, 103–108, 655, 724
applying to feeding workpieces, 665
automation vs., 656, 657–658
cost considerations, 667, 669
defect prevention through, 672–676
detach movement, 671–672
drilling machine case study, 669–672
extension to assembly line, 676–682
feed motion, 670
full work system, 676–677
manual labor vs., 655, 656
mechanization vs., 656
preventing oversights in nameplate attachments, 681–682
steps toward, 655–657
three functions, 658–660
Jigs
5-point check for orderliness, 256
applying orderliness to, 307
color-coded orderliness, 368–369
combining, 314
easy-to-maintain orderliness for, 307
eliminating through orderliness strategies, 313–316
indicators for, 308
outlined orderliness, 309
JIT delivery efficiency list, 794–796
JIT improvement cycle, 144
roles of visual control tools in, 473
JIT improvement items, 837–840
JIT improvement memo, 836
JIT improvements, 12, 13
“doing” as heart of, 133
and changeover costs, 74
and parts list depth, 82
as discipline, 130
as religion, 138
as top-down improvement method, 135
basis in ideals, 12
case study, 288
cube improvements, 27
factory as true location of, 34
from within, 139–143
hostile environment in U.S. and Europe, 107
improvement lists, 33–34
improvement meetings, 32–33
improvement promotion office, 31–32
lack of faith in, 41
line improvements, 25–26
plane improvements, 26–27
point improvements, 25
promoting and carrying out, 30–34
requirement of faith, 139
sequence for introducing, 21
seven stages in acceptance of, 140–144
ten arguments against, 299
vs. JIT production management, 7
vs. labor intensification, 86
weekly improvement days for, 32
JIT innovation, 13
JIT introduction steps, 12–13
 5Ss for factory improvement, 15–17
 awareness revolution step, 13–15
 department chiefs’ duties, 28–29, 30
 division chiefs’ duties, 28
 equipment operators’ duties, 30
 factory superintendents’ duties, 28–29
 flow manufacturing, 17–19
 foremen’s duties, 30
 leveling, 20–22
 president’s duties, 28
 section chiefs’ duties, 30
 standard operations, 23–24
JIT introduction-related forms, 834
 improvement memo, 836
 improvement results chart, 844–845
 JIT leader’s report, 849–850
 JIT Ten Commandments, 834–835
 list of JIT improvement items, 837–840
 weekly report on JIT improvements, 846–848
JIT leader’s report, 849–850
JIT Management Diagnostic List, 715–718
JIT production
 adopting external trappings of, 472
 as new field of industrial engineering, xii
 company-wide promotion, 28, 29
 elimination of waste through, xi
 five stages of, 719, 721, 726, 728
 guidance, education and training in, 30
 hands-on experience, 30
 in-house seminar, 343
 innovation in, 47–49
 linked technologies in, 334
 promotional organization, 31
 radar chart, 727
 setting goals for, 28
 structure, 720
JIT production management
 distinguishing from JIT improvements, 7
 vs. conventional production management, 1–3
JIT production system
 as total elimination of waste, 145
 changeover, 11
 flow manufacturing, 9–10
 from vertical to horizontal development, 24–27
 human automation, 12
 introduction procedure, 12–14
 jitoka, 12
 kanban system, 10
 leveling, 11
 maintenance and safety, 12
 manpower reduction, 10
 multi-process handling, 10
 organizing for introduction of, 27–30
 overview, 7–9
 quality assurance, 11
 standard operations, 11–12
 steps in establishing, 14
 view of waste, 152
 visual control, 10–11
JIT radar charts, 719, 727, 729
JIT study groups, 15
JIT Ten Commandments, 834–835
Job shop layout, 395
Just-in-case inventory, 323
Just-In-Time
 anatomy of, 8–9
 and cost reduction, 69–71
 as consciousness improvement, 139–143
 functions and five stages of development, 728
 innovation and, 47–49
 view of inspection work, 168

K

Kaizen boards, 462
 visual control and, 471–473
 with improvement results displays, 463
Kanban systems, xii, xiii, 7, 8, 10, 11, 52, 54, 174, 231, 365, 692, 722
 administration, 447–451
 and defect prevention, 441–442
 and downstream process flow, 441
 and in-process inventory, 435
 applying to oiling, 693
 appropriate use of, 70–71
 as autonomic nervous system for JIT production, 440
 as tool for promoting improvements, 441
 as workshop indicators, 442
differences from conventional systems, 435–437
factory improvements through, 440–441
fixed ideas about, 447
functions, 440–441
in processing and assembly lines, 447–448
in-factory kanban, 444–445
novel types, 450–451
production kanban, 445
production leveling through, 442
purchasing-related, 449–450
quantity required, 445–447
rules, 441–442
signal kanban, 445
supplier kanban, 443
types of, 442–447
visual control with, 457
vs. conventional production work orders, 437–439
vs. reordering point method, 435–437
waste prevention with, 232

L
L-shaped line production, 360
Labor cost reduction, 415, 418, 722
and elimination of processing islands, 421
and mental flexibility, 420
and movable equipment, 420–421
and multi-process operations, 421
and production leveling, 421–422
and standardized equipment and operations, 421
approach to, 415–418
display board for, 433–434
flow production for, 422–424
multi-process operations for, 424–426
multiple skills training schedule for, 432–433
steps, 419–422
strategies for achieving, 422–432
through cooperative operations, 427–430
through group work, 426–427
through separating human and machine work, 430–432
visible, 432–434
vs. labor reduction, 417–418
Labor cost reduction display board, 433–434
Labor intensity/density, 84–86
vs. production output, 86
Labor per unit, 649
Labor reduction, 63, 418, 647
vs. labor cost reduction, 417–418
vs. worker hour minimization, 66–69
Labor savings, 418
Labor unions, 107. See also Craft unions; Enterprise unions
and multi-process operations, 393–394
Labor-intensive assembly processes, 217
Large lot sizes, 18, 62, 73, 278, 321, 398, 483, 598
and changeover times, 216
and machine waste, 155
as basis of production schedules, 476
case study, 286–287
fixed ideas about, 417
switching to small-lot flow from, 639
Large machines waste, 154–155, 331
Large-scale container deliveries, 381
Latent minor defects, 680
Latent waste, 198
Lateral development, 27, 378, 505, 506
Lateral improvement makers, 167
Lathes, 682
three kinds of motion, 663
worker separation from, 702
Layout improvement, 638
Lead-time
and inventory, 88
and lot sizes, 498
and production lot size, 72
and work stoppage, 59–61
estimated vs. real, 98–99
inventory and, 87–89
lengthened with shish-kabob production, 158
paper, 4, 5
physical, 5
product, 4
reduction with multi-process operations, 393
shish-kabob vs. flow production approaches, 331, 486
shish-kabob vs. level production approaches, 484–485
shortening by reducing processing time, 55
Leadership, for multi-process operations, 404–405
Left-right attachment errors, 615
Leg motion, minimizing, 221
Level production, 475, 723. See also Leveling
as market-in approach, 482
vs. once-a-day production, 481
vs. shish-kabob production, 482–485, 486
Leveling, 50, 476. See also Level production;
Production leveling
and production schedule strategies,
477–482
approach to, 476–477
capacity and load, 21
estimate-based, 23
reality-based, 23
role in JIT introduction, 20–22
role in JIT production system, 11
techniques, 482–492
Leveling techniques, 485
baton touch zone method, 491
bypass method, 491–492
cycle list method, 487–489
cycle tables, 485
cycle time, 485–487
nonreserved seat method, 487–489
reserved seat method, 489–490
Limit switches, 403, 470, 570, 676, 677, 706, 708
Line balance analysis charts, 785–787
Line balancing
at PCB assembly plant, 514
SOS system for, 217
strategies for, 491
Line balancing analysis tables, 358
Line design, based on P-Q analysis, 346, 347
Line efficiency, 68
Line improvements, 25–26
Line stops, 470
5WH follow-up after, 234
at preset positions, 678–680
with poka-yoke devices, 675
Lined up inventory placement, 304–306
Linked technologies, in JIT production, 334
Litter-preventive device, for drill press, 248
Load leveling, 21
Loading methods, 379
Long-term storage, case study, 291
Lot sizes, 45, 87
and lead time, 72
large vs. small, 71–74
Lot waiting waste, 215–216, 219
waste removal, 219
Low morale, 16

M

Machine errors
and defect prevention, 554–555
poka-yoke to prevent, 564
Machine operating status, andon
notification of, 466
Machine placement, waste and, 185
Machine signboards, 295
Machine standardization, 228
Machine start-up, applying jidoka to, 663, 668
Machine work
clarifying with combination charts, 664
compact PCB washer example, 431
Machine/people waiting, 214
Machines
as living things, 120–122
shish-kabob vs. level production approaches, 484, 486
with strong constitution, 708
Machining line, full work system, 677
Maintenance, 683, 725
and accidents, 685–687
and possible utilization rate, 684–685
breakdown prevention, 693–695
Cleanliness, Checking, and Oiling (CCO) approach, 689–693
defined, 684–689
existing conditions, 683–684
full-fledged, 708–709
improving through 5Ss, 241
in JIT production system, 12
of equipment, 119
Maintenance campaigns, 687–689
Maintenance errors, 560
Maintenance prevention, 688
Maintenance technicians, 689
Make-believe automation, 79
Man, material, machine, method, and management (5Ms), 152, 153
Management-related forms, 715
five stages of JIT production, 719, 721–725
JIT Management Diagnostic List, 715–718
JIT radar charts, 719
Manpower flexibility, 338
Manpower needs, based on cycle time, 22
Manpower reduction, 10, 62–65, 63, 337, 392
 household electronics assembly line example, 428
 improving efficiency through, 61
 through flow production, 422–424
Manual dial positioning, eliminating with spacer blocks, 526
Manual labor, 655, 656
Manual operations, two-handed start/stop, 220
Manual position setting, eliminating need for, 524
Manual work time, 635
Manual-conveyance assembly lines, progress andon in, 469
Manufacturing
 as service industry, 1
 five essential elements, 553
 nine basic elements (7Ms plus E&I), 552
 purpose of, 1
Manufacturing flow, as basis for equipment improvements, 114–120
Manufacturing process, components, 56
Manufacturing waste, 149
Market demand fluctuations, unsuitability of kanban for, 436
Market price, as basis of sales price, 35
Market-in production, xii, 416, 555
 level production as, 482
Marshaling, 306
Mass production equipment, 216, 219
Material handling
 building flexibility into, 419
 minimizing, 176
 vs. conveyance, 164
Material handling costs, 159, 163
Material requirements planning (MRP), 52
Materials flow
device improvements facilitating, 638–640
standard operations improvements, 641
Materials inventory, 101, 102
Materials waiting, 215, 218
Materials waste, 157
Materials, and defect prevention, 553–554
Measuring tools
 orderliness for, 318
 types, 319
Mechanization, 656
Medical equipment manufacturing,
 manpower reduction example, 423
Meetings, waste in, 158
Mental improvements
 vs. implementation, 140
 vs. real improvements, 130–134
Metal passage sensors, 574
 applications, 581
Microswitch actuators, 571
Microswitches, 570, 674
Milling machine, safety poka-yoke for, 705–706
Minimum labor cost, 62
Missing item errors, 587, 607–611, 678
Mistake-proofing, 119
Mistakes, correcting immediately, 207
Mixed loads, 379
Mixed-model flow production, 492
Mizusumashi (whirligig beetle), 465
Model and operating rate trend charts, 805–807
Model lines, analyzing for flow production, 348
Mold burr defects, prevention, 674–675
Monitoring, vs. managing, 123–126, 126–130
Motion
 and work, 74–79
 as waste, 76, 78, 79, 84
 costs incurred through, 77
 economy of, 642
 lathes and, 663
 vs. work, 657, 659
Motion study, 642
Motion waste, 639
 improvements with standard operations, 639
Motor-driven chain, 694
Movable machines, 64–65, 65, 117–118, 165, 354, 420
 and caster strategy, 349–350
 building flexibility through, 419
Movement
 as waste, 178
 improving operational efficiency, 642–649
 non-added value in, 190
Muda (waste), 643
Multi-process operations, 10, 19, 64, 330,
 359, 362–363, 387–388, 417, 722
 abolishing processing islands for, 396–398
 and labor unions, 393–394
 as condition for flow production, 337–338
 basis for pay raises in, 394
 compact equipment for, 398–399
 effective leadership for, 404–405
 equipment layout for, 389
equipment modification for, 406
defect prevention with, 653
factory-wide implementation, 405
trainer roles, 413
human assets, 389
workshop leader roles, 411
human automation for, 402–403
Mura (inconsistency), 643
human work vs. machine work in, 400–402
Muri (irrationality), 643
in wood products factory, 425
Mutual aid system, 65
key points, 395–404
poka-yoke for, 402–403
precautions, 404–406
promoting perseverance with, 406
questions from western workers, 393–395
safety priorities, 403–404, 406
simplified work procedures for, 404
standard operations improvements, 639
standing while working for, 399–400
training costs for, 394–395
training for, 421
training procedures, 407–413
transparent operations in, 405
U-shaped manufacturing cells for, 395–396
vs. horizontal multi-unit operations, 388–393
Multi-process workers, 331
as condition for flow production, 339
at diecast factory, 377
Multi-skilled workers, 19, 390
and standard operations, 650–651
building flexibility through, 419
Multi-unit operations, 338, 391
vs. multi-process operations, 388–393
Multi-unit process stations, 390
Multiple skills contests, 405
Multiple skills evaluation chart, 799–801
Multiple skills maps, 432
Multiple skills score sheet, 410, 432
Multiple skills training, 425, 651
defect prevention with, 563
for multi-process operations, 400
schedule for, 432–434
Multiple skills training schedule, 797–798
Multiple-skills training, 407
demonstration by workshop leaders, 412
during overtime hours, 409
five-level skills evaluation for, 408
hands-on practice, 412
importance of praise, 413
in U-shaped manufacturing cells, 410
schedule, 409

N

Nameplate omission errors, 608
preventing with jidoka, 681–682
Needed items, separating from unneeded items, 266
Net time, for standard operations charts, 637
Newly Industrialized Economic Societies (NIES), xi
Next process is your customer, 51, 54, 132
Non-value-added steps
as waste, 147, 171
in inspection, 170
in retention, 163
Noncontact switches, 572
color mark sensors, 574
displacement sensors, 574
double-feed sensors, 576
metal passage sensors, 574
outer diameter/width sensors, 574
photoelectric switches, 572, 574
positioning sensors, 574
proximity switches, 574
vibration switches, 574
Nondefective products, counting, 119
Nonreserved seat method, 487–489
Nonunion labor, 394
Nuts and washers, eliminating as internal changeover improvement, 521

O

Oil containers, color-coded orderliness, 319
Oil, color-coded orderliness for, 318–319
Oiling, 691–693
kanban for, 693
On-site experience, 190
and 5W1H method, 233, 235
by supervisors, 230, 233, 235
Once-a-day production scheduling, 480–482
Once-a-month production scheduling, 478–479
Once-a-week production scheduling, 479–480

One how, 24, 128, 130–134, 183
One-piece flow, 19, 64, 115–116, 165, 185, 419, 639. See also Flow manufacturing
as condition for flow production, 335–336
discovering waste with, 183–185
hand-transferred, 338
in multi-process operations, 388
maintaining to avoid creating waste, 351–353, 353
revealing waste with, 350–351, 352
switching to, under current conditions, 184
using current equipment layout and procedures, 336

One-touch tool bit exchange, 522
Operation andon, 464, 468–469
Operation errors, 560
Operation management, 81
Operation method waiting, 215, 218

Operation methods, conditions for flow production, 342
Operation step method, 568, 569
Operation-related waste, 173, 178, 180
Operational combinations, 193
Operational device improvements, 640
Operational rules, standard operations improvements, 639–640
Operations analysis charts, 735–736
Operations analysis table, 190–192, 735, 736
 aluminum casting deburring operation example, 192
Operations balancing, 219
Operations improvements, 103, 104, 105, 217
Operations manuals, 405
Operations standardization, 228
Operations, improving point of, 220

Operators
 conditions for flow production, 342
diecast factory case study, 377
maintenance routines, 691
reducing gaps between, 370
shish-kabob vs. flow production approaches, 330–331

Opportunistic buying, 162

Optical displacement sensors, 578
Oral instructions, avoiding, 556
Order management, 81

Orderliness, 16, 157, 245–246, 510
 applied to die storage sites, 530–531
 applying to jigs and tools, 307
 beyond signboards, 302–306
color-coded, 319, 384
conveyance liveliness index, 304
easy-to-maintain, 307, 310–313
eliminating tools and jigs with, 313–316
for cutting tools, 316–319
for measuring tools, 318
for oil, 318–319
four stages in evolution, 312
habitual, 302
inventory liveliness index, 303–304
just-let-go principle, 313, 314
lined up inventory placement, 304–306
made visible through red tags and signboards, 265–268
obstacles to, 17
visible, 252–253

Outer diameter/width sensors, 574
Applications, 578

Outline orderliness, for jigs and tools, 309–310
Outlining technique, waste prevention with, 231

Overall efficiency, 66
Overkill waste, 173

Overload prevention devices, 706
Overproduction waste, 69, 174–175, 180
 beyond cycle time, 677
 preventing with A-B control, 676–677

Overseas production shifts, xi

P

P-Q analysis, 188, 345–346
P-Q analysis lists/charts, 777–781
Packing omission errors, 610

Paging andon, 464, 465–466
 hire method for using, 466

Painting process, reserved seat method example, 490

Paper lead-time, 4, 5

Parallel operations, 224–225, 536
 calculations for parts-production capacity work tables, 634
establishing in transfer machine blade replacement, 528
full vs. partial, 225
Pareto chart, 132, 457
Parking lots, well- and poorly-managed, 300
Parkinson's Law, 126
Part omission errors, 607
Partial parallel operations, 225
calculations for parts-production capacity work tables, 633–634
Parts assembly
preventing omission of parts tightening, 681
preventing oversights with jidoka, 680–681
Parts development, 52
Parts inventories
demand trends, 475
strategies for reducing, 475–476
Parts list, depth and production method, 82
Parts placement
in cooperative operations, 370
standard operations improvements, 643
Parts tray/box, visible organization, 385
Parts waste, 157
Parts, improvements in picking up, 643–644
Parts-production capacity work table, 626, 629, 822–824
serial operations calculations, 633
steps in creating, 632–634
Pay raises, basis of, 394
PCB assembly plant, internal-external changeover improvements, 513–514
People
as root of production, 104, 107, 108
training for multi-process operations, 389
Per-day production total, 487
Per-unit time, 633
Performance below expectations, 686
Personnel costs, and manpower strategies, 63
Photoelectric switches, 572, 574, 682
applications, 572
object, detection method, and function, 573
Physical lead-time, 5
Pickup kanban, 444
Piecemeal approach, failure of, xiii
Pin dimension errors, 595
Pinch hitters, 407
Pitch, 66, 67, 337, 433, 469. See also Cycle time adjusting to worker pace, 358–359
approaches to calculating, 485
factors determining, 70
failure to maintain, 678
hourly, 482
individual differences in, 67
myth of conveyor contribution to, 156
Pitch buzzers, waste prevention with, 232
Pitch per unit, 649
Plane improvements, 26–27
Plywood gluing process, accidents, 696
Pneumatic cylinders
safety improvement from, 694
workpiece removal with, 667
Pneumatic switches, 680–681
Point improvements, 25
line improvements as accumulation of, 26
Poka-yoke, 119, 159, 177, 675, 680, 682.
See also Safety and defect prevention, 566
approaches, 568–570
concept and methodology, 565–568
control devices, 567
defect prevention with, 564
detection devices, 570–585
drilling machine case study, 703
for crane operations, 706
for multi-process operations, 402–403
milling machine example, 705–706
safety applications, 703–709, 709
safety cage on press, 704
safety plate case, 703
stop devices, 566–567
warning devices, 567
Poka-yoke case studies, by defect type, 586–587
Poka-yoke checklists
three-point evaluation, 619–620
three-point response, 620–622
using, 616–622
Poka-yoke detection devices, 570
applications, 585
contact devices, 570–572
noncontact switches, 572–575
Poka-yoke/zero defects checklist, 820–821
Policy-based buying, 162
Position adjustments, avoiding, 537–538
Positioning sensors, 574
applications, 577
Positive attitude, 204–205
Possible utilization rate, 684–685, 708
Postural ease, 221
Power, inexpensive types, 222
PQCDS approach, 2, 3
Practical line balancing, 357, 358
Preassembly processes, scheduling, 477
Preparation waste, in external changeover procedures, 510
Preset stop positions, 680
Press die alignment errors, 596
Press operator, waste example, 77–78
Presses
 safety problems, 702
 worker separation, 703
Preventive inspection, 564
Preventive maintenance, 688, 708
Previous process-dependent production, 54
Price cutting, due to inventory, 325
Printed circuit board assembly shop, 211
 arrow diagrams, 189, 212
Proactive improvement attitude, 54
Problem-solving, vs. evasive responses, 150
Process display standing signboards, 462–463
Process improvement models, 166, 167
Process route diagrams, 782–784
Process route tables, 347, 348
Process separation, 216, 219
Process waiting waste, 214, 218
Process, transfer, process, transfer system, 59
Process-and-go production, 55–59, 57, 59
Process-related waste, 177–178
Processing, 56, 160, 187
 lack of time spent in, 58
 shish-kabob vs. flow production approaches, 329–330
Processing errors, 586
Processing islands
 abolishment of, 396–398
 eliminating, 421, 426–427
Processing omissions, 580, 588–600
Processing sequence
 at diecast factory, 374, 376
 equipment layout by, 336–337, 353–355
Processing time, reducing to shorten lead-time, 55
Processing waste, 166–167, 180
Procrastination, 205, 207
Procurement
 applying JIT to, 47
 standardization, 229
Product inventory, 101, 102
 demand trends, 475
 strategies for reducing, 475–476
Product lead-time, 4
Product model changes
 and capacity utilization rates, 504
 avoidance of, 162
Product set-up errors, 602
Product-out approach, 36, 416, 483, 555
 once-a-month production scheduling in, 479
Product-specific delivery sites, 384
Product-specific inventory management, 305
Production
 equipment- vs. people-oriented, 112–113
 roots in people, 104, 108
 waste-free, 49
Production analysis, 345–348
Production as music, 29–50, 51–54
 three essential elements, 50
Production factor waste, 159–160
 conveyance and, 163–166
 inspection and, 167–172
 processing and, 166–167
 retention and, 160–163
Production input, 59, 60
Production kanban, 443, 445
Production leveling, 21, 421–422, 482.
 See also Leveling
 as prerequisite for efficiency, 71
 flow production development for, 492–494
 importance to efficiency, 69
 kaizen retooling for, 494–495
 strategies for realizing, 492–494
 with kanban systems, 442, 445
Production management
 conventional approach, 3–7
 defined, 6
 management system, 6
 physical system, 6
 vs. JIT production management, 1–3
Production management boards, 457, 470–471, 802–804
Production method
 and defect prevention, 555
 shish-kabob vs. level production, 484, 486
Production output, 59, 60
 and in-process inventory, 89
 and volume of orders, 61
 increasing without intensifying labor, 86
Production philosophy, shish-kabob vs.
 level production, 483–484, 486
Production planning, 52
Production schedules, 4
 leveling production, 482
 once-a-day production, 480–482
 once-a-month production, 478–479
once-a-week production, 479–480
strategies for creating, 477
Production standards, 623. See also Standard operations
Production techniques, 715
JIT Management Diagnostic List, 718
Production work orders, vs. kanban systems, 437–439
Productivity, 59–61
and volume of orders, 61
boosting with safety measures, 701
coexisting with humanity, 387–388
volume-oriented approach to, 415
Productivity equation, 415, 416
Products, in PQCDS approach, 3
Profit
and cost reduction, 36
losses through motion, 77
Profitable factories, 40
anatomy of, 39
Progress andon, 464, 469–470
Proper arrangement, 16, 157, 243–245, 510
applied to die storage sites, 530–531
five-point checklist, 772
made visible through red tags and signboards, 265–268
obstacles to, 17
visible, 251–252
Proximity switches, 574
applications, 576
Pseudo improvements, 126–130
Public changeover timetable, 505, 808–809
Pull production, 10, 26, 51, 52, 54, 70, 438
flow of information and materials in, 53
relationship to goods, 439
using full work system, 367
using hand delivery, 366
vocal, 371, 372
Punching lathe, worker separation, 702
Purchasing-related kanban, 449–450
Push production, 10, 26, 51, 419, 438, 439
as obstacle to synchronization, 364–365
flow of information and materials in, 53
improving through 5Ss, 241
in PQCDS approach, 3
process-by-process, 123–126
Quality assurance, 724
and defect identification, 546–561
and poka-yoke system, 565–585
as starting point in building products, 541–542
in JIT production system, 11
JIT five levels of QA achievement, 542–546
poka-yoke defect case studies, 586–615
use of poka-yoke and zero defects checklists, 616–622
zero defects plan, 561–565
Quality check points, for standard operations charts, 636–638
Quality control inspection method, 169

Q

QCD (quality, cost, delivery) approach, 2
Quality
estimated, 122
Radar chart, 727
Rational production, 120–121, 122
shish-kabob vs. flow production approaches, 330
Reality-based leveling, 23
Recession-resistant production system, 8
Red tag campaign reports, 761–765
Red tag criteria, setting, 273–274
Red tag episodes, 281
employee involvement, 284
excess pallets, 283
red tag stickers, 283–284
red tagging people, 282
showing no mercy, 284–285
twenty years of inventory, 281–282
twice red tagged, 282
yellow tag flop, 283
Red tag forms, 271
Red tag items list, 765
Red tag list, computer-operated, 280
Red tag strategy, xii, 17, 265–268, 269–270, 455
campaign timing, 268
case study at Company S, 285–289
criteria setting, 273–274
for visual control, 268–269
implementation case study, 290–293
indicating where, what type, how many, 268
main tasks in, 291
making tags, 274–275
overall procedure, 267
project launch, 271, 273
red tag episodes, 281–285
red tagging computers, 278–281
steps, 270–278, 272
tag attachment, 276
target evaluation, 276–278
target identification, 273
understanding, 282
waste prevention with, 231
Red tag strategy checklist, 292
Red tag strategy report form, 293
Red tag targets
evaluating, 276–278
identifying, 273
Red tags, 758, 759, 760
attaching, 276
eexample, 275
making, 274–275
Reliability, increasing in equipment, 688
Reordering point method, 435–437, 475
Replacement waste, 509–510
eliminating in internal changeover, 518–523
Required volume planning, 52
Research and development, 37
Reserved carts, for changeover, 531–532
Reserved seat method, 489–490
painting process example, 490
Resistance, 42, 43, 199, 201–202
and arguments against JIT improvement, 200
and inventory accumulation, 322
by foremen and equipment operators, 30
from senior management, 15
to change, 41, 84
to multiple-skills training, 407
Responsiveness, 453
Retention, 56, 57, 160, 186, 187
and anticipatory buying, 162
and anticipatory manufacturing, 162
and capacity imbalances, 161–162
in shish-kabob production, 484
process, retention, transfer system, 59
reducing, 59
waste in, 160–163
Retention waste
eliminating, 213–214
lot waiting waste, 215–216
process waiting waste, 214
Retooling time, 633
Retooling volume, 633
Return on investment (ROI), inventory and, 95
Return to start position, 663
applying jidoka to, 666, 667
Returning waste, 511
Rhythmic motions, 221
Rules, for safety, 696, 697, 699

S

S-shaped manufacturing cells, 362
Safety, 152, 406, 725
 basic training for, 698–699
 defined, 698–699
 for multi-process operations, 403–404
 full-fledged, 70–709
 in JIT production system, 12
 in PQCDS approach, 3
 in standard operations chart, 701
 poka-yoke applications, 703–703
 standard operations goals, 624
 through 5Ss, 241
 visual assurance, 707–708
Safety cage, 704
Safety check points, for standard operations charts, 657
Safety improvement, pneumatic cylinders to springs, 694
Safety plate, 703
Safety strategies for zero injuries/accidents, 699–709
Salad oil example, 312
Sales figures
 and equipment improvements, 115
 impact of seasons and climatic changes on, 97
Sales price, 36
 basis in market price, 35
Sampling inspection, 120–122
Screw-fastening operation, waste in, 148
Searching waste, 154
Seasonal adjustments, 323–324
Seiketsu (cleanup), 16, 239, 246–247
Seiri (proper arrangement), 16, 238, 243–245
photo exhibit, 260
Seiso (cleanliness), 16, 239, 246
Seiton (orderliness), 16, 245–246, 328
photo exhibit, 260
Self-inspection, 392
Senior management
approval for 5S approach, 262
ignorance of production principles, 88
need to believe in JIT, 139
on-site inspection by, 264
role in awareness revolution, 14–15
role in production system change, 3
Seniority, as basis of pay raises, 394
Sensor assembly line, multi-process operations on, 363
Sequential mixed loads, 379
Serial operations, 224
calculations for parts-production capacity work tables, 633
eliminating, 527–529
Set-up
applying human automation to, 669
pre-manufacturing, 499
unprocessed workpieces, 663, 667
Set-up errors, 560, 586, 601–606
Seven QC tools, 132, 133
Seven types of waste, 172–174
conveyance waste, 176
defect production waste, 176–177
idle time waste, 178–179
inventory waste, 175–176
operation-related waste, 178
overproduction waste, 174–175
process-related waste, 177–178
Shared specifications, 419
Shish-kabob production, 10, 17, 18, 20, 46, 70, 104, 166, 207
approach to processing, 329–330
as large-lot production, 423
as obstacle to synchronization, 371–373
disadvantages, 158
equipment approach, 331
equipment layout in, 330
in-process inventory approach, 331
lead time approach, 331
operator approaches, 330–331
production scheduling for, 476
rational production approach in, 330
vs. flow production, 328–332
vs. level production, 482–485, 486
waste in, 158
Shitsuke (discipline), 16, 239, 247–249
Short-delivery scheduling, 379, 497
Shotblaster
at diecast factory, 375
compact, 354, 377, 398–399
Shukan (custom), 689
Signal kanban, 443, 445, 446
Signboard strategy, 442, 455, 464
amount indicators, 301–302
and FIFO, 302–303
defined, 294–296
determining locations, 296
die storage site using, 530
for delivery site management, 383
for visual orderliness, 293–294
habitual orderliness, 302
indicating item names, 299–300
indicating locations, 298
item indicators, 301
location indicators, 299
parking lot item indicator examples, 300
preparing locations, 296–298
procedure, 297
signboard examples, 295
steps, 296–302
Signboards, 43, 44, 265–268
overall procedure, 267
waste prevention with, 231
Simplified work procedures, 404
and defect prevention, 549
Single-process workers, 339, 375, 419
Single-product factories, 71
Single-product load, 379
Sink cabinet factory, flow production example, 493
Skin-deep automation, 79
Slow-but-safe approach, 102–103
Small-volume production, xi, 2, 62, 278, 321, 497
Social waste, 159
Solder printing process, flow of goods improvement, 641
Sorting inspection, 168, 169
Spacer blocks
and manual positioning, 524–525
eliminating need for manual dial positioning with, 526
Speaker cabinet processing operations, improvements, 646–647
Special-order production, 2
Specialization
in Western vs. Japanese unions, 393–394
vs. multi-process operations, 639
Specialized carts, for changeover operations, 532
Specialized lines, 371–373
Specialized machines, cost advantages, 332
Speed, vs. cycle time, 116
Spindle hole punch processing omission, 590
Spirit of improvement, 43, 44
Staff reduction, 62, 418
Standard operating processes (SOPs), 23
Standard operation forms, 626
parts-production capacity work table, 626
standard operations chart, 627–628, 628
standard operations combination chart, 626, 627
standard operations pointers chart, 626–627, 627
steps in creating, 630–638
work methods chart, 627
and multi-skilled workers, 650–651
and operation improvements, 638–649
as endless process, 624
combination charts for, 223–226
communicating meaning of, 652
cost goals, 624
cycle time and, 625
defined, 623
delivery goals, 624
eliminating walking waste, 645–649
equipment improvements facilitating, 640
equipment improvements to prevent defects, 640
establishing, 628–630, 629–630, 630
factory-wide establishment, 652
forms, 626–628
goals, 624
implementing for zero injuries/accidents, 699–703
improvement study groups for, 653
improvements to flow of goods/materials, 638–640
in JIT production system, 11–12
materials flow improvements, 641
motion waste elimination through, 639
movement efficiency improvements, 642–643
multi-process-operations improvements, 639
need for, 623–624
obtaining third-party help, 653
one-handed to two-handed task
improvements, 644–645
operational rules improvements, 639–640
parts placement improvements, 643
picking up parts improvements, 643–644
preserving, 650–654
quality goals, 624
rejection of status quo in, 653
reminder postings, 652
role in JIT introduction, 23–24
safety goals, 624, 697
separating human work from machine work for, 640, 649–650
sign postings, 652
spiral of improvement, 629
standard in-process inventory and, 625–626
ten commandments for, 651–654
three basic elements, 625–626
transparent operations and, 628
waste prevention through, 226
wood products manufacturer’s combination charts, 227
work sequence and, 625
workshop leader skills, 652, 653
Standard operations chart, 627, 628, 629, 631, 637
safety points, 700, 701
steps in creating, 630–632, 636–638
Standard operations combination chart, 193, 457, 626, 627, 629, 631, 825–826
steps in creating, 634–636
Standard operations form, 831–833
Standard operations pointers chart, 626–627, 627
Standard operations summary table, 827–828
Standard parameters, changeover of, 499
Standardization
of equipment, 421
waste prevention by, 228–230
Standby-for-lot inventory, 161
Standby-for-processing inventory, 161
Standing signboards, 462–463
Standing while working, 19, 118, 355, 424, 425, 429
and cooperative operations, 368
as condition for flow production, 339
in assembly lines, 355–359
in multi-process operations, 399–400
in processing lines, 359–360
work table adjustments for, 360
Statistical inventory control methods, 475
Statistical method, 570
 poka-yoke, 659
Status quo
denying, 205
 failure to ensure corporate survival, 15
 reluctance to change, 42
Steady-demand inventories, 476
Stockpiling, 160
Stop devices, 566–567
Stop-and-go production, 55–59, 57
Stopgap measures, 150
Storage, cutting tools, 318
Straight-line flow production, 340, 360
Subcontracting, applying JIT to, 47
Subcontractors, bullying of, 378
Sudden-demand inventories, 476
Suggestion systems, 36
Supplier *kanban*, 443, 444
Supplies management, 81
Surplus production, 323
 and defects, 549
Sweat workers, 74, 75
Symmetrical arm motions, 220–221
Synchronization, 363–364
 as condition for flow production, 337
 bottlenecked process obstacle, 364
 changeover difficulties, 373
 obstacles to, 364–368
 PCB assembly line, 366, 367
 push method as obstacle to, 364–365
 work procedure variations as obstacle to, 367–371

Tool elimination
 as internal changeover improvement, 519–520
 by transferring tool functions, 316
Tool preparation errors, 560, 587, 615
Tools
 5-point check for orderliness, 256
 applying orderliness to, 307
 close storage site, 311
 color-coded orderliness, 308–309
 combining, 314, 315
 easy-to-maintain orderliness for, 307
 eliminating through orderliness, 313–316
 indicators, 308, 309
 machine-specific, 311
 outlined orderliness, 309
Tools placement, 222
 order of use, 222
Top-down improvements, 134–139
Torque tightening errors, 599
Torso motion, minimizing, 221
Total quality control (TQC), 36, 132
Total value added, 715
Training
 for basic safety, 698–699
 for multi-process operations, 407–413
 for multiple skills, 400
 in CCO, 708
 in Japanese vs. Western factories, 395
Training costs, for multi-process operations, 394–395
Transfer, 56, 57, 58
Transfer machine blade replacement, 528
Transparency, in multi-process operations, 405
Transparent operations, and standard operations, 628
Transport *kanban*, 443
Transport routes, 380–382
Transportation lead-time, 99
Two-handed task improvements, 644–645
 and safety, 704
Two-process flow production lines, 360

U
U-shaped manufacturing cells, 340, 360–362
 as condition for flow production, 341
 for multi-process operations, 395–396
Unbalanced capacity, 322
Unbalanced inventory, 161, 322
Union leadership, 84
Unmanned processes, 668
Unneeded equipment list, 767
Unneeded inventory list, 765, 766
Unneeded items
 moving out, 266
 separating from needed items, 266
 throwing out, 266
 types and disposal treatments, 277
 unneeded equipment list, 278
 unneeded inventory items list, 277
Unprocessed workpieces, set-up, 663, 668
Unprofitable factories, anatomy of, 38
Usability testing, and defect prevention, 549–550
Use points, maximum proximity, 222
Usefulness, and value-added, 147

V

Value analysis (VA), 157
Value engineering (VE), 157
Value-added work, 85, 166
 JIT Management Diagnostic List, 717
 vs. wasteful motion, 86, 147
VCR assembly line, cooperative operations example, 429
Vertical development, 20, 24–27, 26, 378, 391
Vertical improvement makers, 167
Vibration switches, 574
 applications, 583
Visible 5Ss, 249–251, 252
 visible cleanliness, 253
 visible discipline, 254–255
 visible orderliness, 252–253
 visible proper arrangement, 251–252
 visibly cleaned up, 253
Visible cleanliness, 253
Visible discipline, 254–255
Visible orderliness, 252–253
 with signboard strategy, 295
Visible proper arrangement, 251–252
Visibly cleaned up, 253
Visual control, 26, 120, 231, 251, 723
 and kaizen, 471–473
 and andon, 456, 464–470
 as non-guarantee of improvements, 453–454, 472–473
 defect prevention with, 563
 defective item displays for, 456, 457, 458
 error prevention through, 456, 458
 for safety, 700
 in JIT production, 10–11
 in kanban systems, 437
 kaizen boards for, 462
 kanban for, 456, 457
 management flexibility through, 419
 preventing communication errors with, 556
 process display standing signboards, 462–463
 production management boards for, 456, 457, 470–471
 red demarcators, 455, 456
 red tag strategy for, 268–269, 455, 456
 signboard strategy, 455, 456
 standard operation charts for, 456, 457
 standing signboards for, 462–463
 through kanban, 440
 types of, 455–459
 visual orderliness case study, 459–462
 waste prevention with, 230–232
 white demarcators, 455, 456
Visual control tools, roles in improvement cycle, 473
Visual orderliness case study, 459–462
 in electronics parts storage area, 460
 signboard strategy for, 293–306
Visual proper arrangement, 17
Visual safety assurance, 707–708
Vocal pull production, 371, 372
Volume of orders, and production output, 61

W

Walking time, 635
Walking waste, 153–154, 173, 536
 eliminating for standard operations, 645–649
Wall of fixed ideas, 210
Warehouse inventories, 161, 173
 as factory graveyards, 73
 reduction to zero, 20
Warehouse maintenance costs, 73
Warehouse waste, 69
Warning andon, 466–468
Warning devices, 567
Warning signals, 567
Washing unit, 364
compact, 356
in-line layout, 365
Waste, xii, 15, 643
5MQS waste, 152–159
and corresponding responses, 180
and inventory, 48
and motion, 75
and red tag strategy, 269
as everything but work, 182, 184, 191
avoiding creation of, 226–236
concealment by shish-kabob production, 17, 158
conveyance due to inventory, 90
deeply embedded, 18, 150, 151
defined, 146–150
developing intuition for, 198
eliminating with 5Ss, 508–511
elimination by kanban, 440
elimination through JIT production, xi, 8, 341–342
embedding and hiding, 84
examples of motion as, 76
hidden, 179
hiding in conveyor flows, 67
how to discover, 179–181, 179–198
how to remove, 198–226
identifying in changeover procedures, 508–511
in changeover procedures, 501
in external changeover operations, 510–511
in internal changeover operations, 509–510
in screw-fastening operation, 148
inherited vs. inherent, 79–84
invisible, 111
JIT and cost reduction approach to, 69–71
JIT Production System perspective, 152
JITs seven types of, 172–179
JITs seven types of, 172–179
latent, 198
making visible, 147
minimizing through kanban systems, 437
production factor waste, 159–172
reasons behind, 146–150
reinforcing by equipment improvements, 111–112
related to single large cleaning chamber, 155
removing, 84–86, 198–226
severity levels, 171–172
through computerization, 83
total elimination of, 145, 152
types of, 151–179
Waste checklists, 194–198
five levels of magnitude, 195
how to use, 195
negative/positive statements, 197
process-specific, 195, 196, 197, 198
three magnitude levels, 197
workshop-specific, 195
Waste concealment, 454
by inventory, 326, 327
revealing with one-piece flow, 350–351, 352
Waste discovery, 179–181
back-door approach to, 181–183
through current conditions analysis, 185–198
with arrow diagrams, 186–190
with one-piece flow under current conditions, 183–185
with operations analysis tables, 190–192
with standard operations, 193–194
with waste-finding checklists, 194–198
Waste prevention, 226, 228
and do it now attitude, 236
by avoiding fixed thinking, 235–236
by outlining technique, 231
by thorough standardization, 228–230
with 5W1H sheet, 232–236
with andon, 232
with kanban system, 232
with one-piece flow, 353
with pitch and inspection buzzers, 232
with red tagging, 231
with signboards, 231
with visual and auditory control, 230–232
Waste proliferation, 198, 199
Waste removal, 198–199
50% implementation rate, 205–206
and Basic Spirit principles for improvement, 204
and denial of status quo, 205
and eliminating fixed ideas, 204
basic attitude for, 199–211
by correcting mistakes, 207
by cutting spending on improvements, 207
by experiential wisdom, 210–211
by Five Whys approach, 208–210
by using the brain, 208
in wasteful movement, 211–217
lot waiting waste, 219
positive attitude towards, 204–205
process waiting waste, 218
through combination charts for standard
operations, 223–226
wasteful human movement, 217–223
Waste transformation, 198
Waste-finding checklists, 737–743
process-specific, 739, 741, 742, 743
workshop-specific, 738, 740
Waste-free production, 49
Waste-related forms, 730
5W1H checklists, 744–746
arrow diagrams, 730–732
general flow analysis charts, 733–734
operations analysis charts, 735–736
waste-finding checklists, 737–743
Wasteful movement
and eliminating retention waste, 213–217
by people, 217–223
eliminating, 211, 213
Wastology, 145
Watch stem processes, 397, 398
Watching waste, 154
Weekly JIT improvement report, 846–848
Whirligig beetle (mizusumashi), 465
Wire harness molding process, internal
changeover improvement case study, 517–518
Withdrawal kanban, 444
Wood products factory, multi-process
operations in, 425
Work
as value-added functions, 182
meaning of, 74–75
motion and, 74–79
vs. motion, 657, 659
Work environment, comfort of, 223
Work methods chart, 627, 629, 829–830
Work operations, primacy over equipment
improvements, 103–108
Work sequence, 636
and standard operations, 625
arranging equipment according to, 638
for standard operations charts, 636
Work tables, ergonomics, 222
Work-in-process, 8
management, 81, 83
Work-to-motion ratio, 86
Work/material accumulation waste, 173
Worker hour minimization, 62, 66–69
Worker mobility, 19
Worker variations, 367–371
Workerless automation, 106
Workpiece directional errors, 605
Workpiece extraction, 663
Workpiece feeding, applying automation to,
665
Workpiece motion, waste in, 158–159
Workpiece pile-ups, 25, 118
Workpiece positioning errors, 605
Workpiece processing, applying jidoka to,
664
Workpiece removal
applying human automation to, 668
motor-driven chain for, 695
with processed cylinders, 667
Wrong part errors, 587, 612, 613
Wrong workpiece, 560, 587, 614

Y
Yen appreciation, xi

Z
Zero accidents, 699
Zero breakdowns, 684, 685
production maintenance cycle for, 687
with 5S approach, 241
Zero changeovers, with 5S approach, 242
Zero complaints, with 5S approach, 242
Zero defects, 545
5S strategy for, 565
human errors and, 562–563
information strategies, 563
machine cause strategies, 564
material cause strategies, 564
overall plan for achieving, 561–565
production maintenance cycle for, 687
production method causes and strategies,
564–565
with 5S approach, 241
Zero defects checklists
three-point evaluation, 619–620
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>three-point response, using</td>
<td>620–622</td>
</tr>
<tr>
<td>Zero delays, with 5S approach</td>
<td>242</td>
</tr>
<tr>
<td>Zero injuries</td>
<td></td>
</tr>
<tr>
<td>strategies for</td>
<td>699–709</td>
</tr>
<tr>
<td>with 5S approach</td>
<td>241</td>
</tr>
<tr>
<td>Zero inventory</td>
<td>20, 98–102</td>
</tr>
<tr>
<td>importance of faith in</td>
<td>176</td>
</tr>
<tr>
<td>Zero red ink, with 5S approach</td>
<td>242</td>
</tr>
<tr>
<td>Zigzag motions, avoiding</td>
<td>221</td>
</tr>
</tbody>
</table>
About the Author

Hiroyuki Hirano believes Just-In-Time (JIT) is a theory and technique to thoroughly eliminate waste. He also calls the manufacturing process the equivalent of making music. In Japan, South Korea, and Europe, Mr. Hirano has led the on-site rationalization improvement movement using JIT production methods. The companies Mr. Hirano has worked with include:

- Polar Synthetic Chemical Kogyo Corporation
- Matsushita Denko Corporation
- Sunwave Kogyo Corporation
- Olympic Corporation
- Ube Kyosan Corporation
- Fujitsu Corporation
- Yasuda Kogyo Corporation
- Sharp Corporation and associated industries
- Nihon Denki Corporation and associated industries
- Kimura Denki Manufacturing Corporation and associated industries
- Fukuda ME Kogyo Corporation
- Akazashina Manufacturing Corporation
- Runeau Public Corporation (France)
- Kumho (South Korea)
- Samsung Electronics (South Korea)
- Samsung Watch (South Korea)
- Sani Electric (South Korea)

Mr. Hirano was born in Tokyo, Japan, in 1946. After graduating from Senshu University’s School of Economics, Mr. Hirano worked with Japan’s largest computer manufacturer in laying the conceptual groundwork for the country’s first full-fledged production management system. Using his own
interpretation of the JIT philosophy, which emphasizes “ideas and techniques for the complete elimination of waste,” Mr. Hirano went on to help bring the JIT Production Revolution to dozens of companies, including Japanese companies as well as major firms abroad, such as a French automobile manufacturer and a Korean consumer electronics company.

The author’s many publications in Japanese include: Seeing Is Understanding: Just-In-Time Production (*Me de mite wakaru jasuto in taimu seisanh hoshiki*), Encyclopedia of Factory Rationalization (*Kojo o gorika suru jiten*), 5S Comics (*Manga 5S*), Graffiti Guide to the JIT Factory Revolution (*Gurafiti JIT kojo kakumei*), and a six-part video tape series entitled JIT Production Revolution, Stages I and II. All of these titles are available in Japanese from the publisher, Nikkan Kogyo Shimbun, Ltd. (Tokyo).